MATH 522 Review Notes

Kaibo Tang

April 29, 2024

Contents

0	Vector spaces and linear transformations								
	0.1	Any linear transformation can be represented by a matrix	4						
1	Metric space								
	1.1	Open and closed sets	4						
	1.2	Completeness	5						
	1.3	Compactness	5						
		1.3.1 Open covers	5						
		1.3.2 Sequential compactness	5						
	1.4	Closed and bounded	5						
		1.4.1 Heine-Borel Theorem	5						
2	Continuous functions on metric spaces								
	2.1	Continuity	6						
		$2.1.1 \epsilon - \delta \dots \dots \dots \dots \dots \dots$	6						
		2.1.2 Sequences	6						
		2.1.3 Open sets	6						
	2.2	Uniform continuity	6						
		2.2.1 Extreme Value Theorem	7						
3	Diff	ferentiability	7						
	3.1	Definition of derivative	7						
	9	$3.1.1 \mathbb{R}^n \to \mathbb{R} \dots \dots \dots \dots \dots$	7						
		$3.1.2 \mathbb{R}^n \to \mathbb{R}^m \dots \dots \dots \dots$	7						
		$3.1.3 V \to W \dots \dots \dots \dots \dots$	7						

	3.2	Criterion for differentiability	8						
	3.3	Important tricks	8						
	3.4	The Chain Rule	8						
	3.5	Clairaut's Theorem	8						
	3.6	Taylor's Theorem	9						
		3.6.1 Multi-index notation	9						
		3.6.2 Multinomial Theorem	9						
		3.6.3 Taylor's Theorem	10						
4	Inverse and Implicit Function Theorems 10								
	4.1	Contraction Mapping Theorem	10						
	4.2	Inverse Function Theorem	10						
		4.2.1 Between euclidean space	10						
		4.2.2 Between normed real vector spaces	11						
		4.2.3 Important usages of the Inverse Function Theorem	11						
	4.3	Implicit Function Theorem	12						
	4.4	Lagrange multipliers	12						
5	Riemann integral 1								
	5.1	<u>e</u>	13						
	5.2	Jordan content	14						
	5.3	Riemann sums	15						
	5.4	Fubini's Theorem	16						
	5.5	Change of Variable Theorem	16						
6	Sur	faces and surface integrals	17						
	6.1	<u> </u>	17						
	6.2	Surface integrals	17						
	$6.2 \\ 6.3$	Surface integrals							
		Surface integrals	17 18 18						
7	6.3 6.4	Jordan content on surfaces	18 18						
7	6.3 6.4 Mu	Jordan content on surfaces	18 18 19						
7	6.3 6.4 Mu 7.1	Jordan content on surfaces	18 18 19 19						
7	6.3 6.4 Mu	Jordan content on surfaces	18 18 19						

8	Diff	erential forms	22		
	8.1	Forms	22		
	8.2	Differentials	23		
	8.3	Orientation of a surface	25		
	8.4	Integration of forms			
9	Generalized Stokes Theorem				
	9.1	Generalized Stokes Theorem	26		
	9.2	Closed and exact forms	27		
	9.3	Brouwer Fixed Point Theorem	28		
10	OD	E Theory	28		
11	Con	npactness in function spaces	30		
12	Den	sity and approximation in function spaces	31		
	12.1	Approximate identity	31		
	12.2	Frechet (metric) topology	32		
		Stone-Weierstrass Theorem			
13	Lebesgue measure and integration				
	13.1	σ -algebra	34		
	13.2	Measure	34		
		Lebesgue measure			
		Lebesgue integration			
		Convergence Theorems			

0 Vector spaces and linear transformations

0.1 Any linear transformation can be represented by a matrix

Let V be a real vector space with basis $B = \{v_1, \dots, v_n\}$. Then, $\forall v \in V$, we can write

$$v = \sum_{i=1}^{n} x_i v_i$$
 where $x_i \in \mathbb{R}$.

We say x is the coordinates of v. Let $T: V \to V$ be a linear transformation. Define an $n \times n$ matrix $A = (a_{ij})$ by

$$Tv_j = \sum_{i=1}^n a_{ij}v_i$$
 where $j = 1, \dots, n$.

Notice that $Tv = w \iff Ax = y$ where x gives the coordinates of v and y gives the coordinates of w.

1 Metric space

1.1 Open and closed sets

Let (X, d) be a metric space and let $S \subseteq X$.

Definition 1.1 (Open set). We say S is an open set if

$$\forall p \in S \ \exists r > 0 \text{ s.t. } B(p,r) \subseteq S.$$

Definition 1.2 (Closed set). We say S is closed if its complement in X, $X \setminus S$ is open.

Proposition 1.3 (Closed set). S is closed $\iff \forall p_n \in S \text{ s.t. } p_n \to p \in X$, we have $p \in S$.

Definition 1.4 (Limit point). We say $p \in X$ is a limit point of S if

$$\forall r > 0 \ \exists x \in S \setminus \{p\} \text{ s.t. } x \in B(p, r).$$

Proposition 1.5 (Closed set). S is closed \iff S contains all its limit points.

1.2 Completeness

Definition 1.6 (Completeness). The metric space (X, d) is complete if every Cauchy sequence (p_n) in X converges to an element $p \in X$.

1.3 Compactness

1.3.1 Open covers

Definition 1.7 (Compact set). We say $K \subseteq X$ is compact if any open cover of K can be reduced to a finite subcover.

1.3.2 Sequential compactness

Definition 1.8 (Sequential compactness). We say $K \subseteq X$ is sequentially compact if any sequence in K has a subsequence that converges to a point of K.

In metric spaces compactness and sequential compactness are equivalent.

Theorem 1.9. A set $K \subseteq (X, d)$ is compact \iff it is sequentially compact.

1.4 Closed and bounded

Proposition 1.10. If $K \subseteq (X, d)$ is compact, then K is closed and bounded.

1.4.1 Heine-Borel Theorem

Theorem 1.11 (Heine-Borel Theorem). In $(\mathbb{R}^n, |x-y|)$, any closed and bounded set is compact. *Note: this is not true in a general metric space*.

2 Continuous functions on metric spaces

2.1 Continuity

2.1.1 $\epsilon - \delta$

Definition 2.1 (Continuity). $f: X \to Y$ is continuous at $a \in X$ if

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{s.t.} \; d(x,p) < \delta \implies d(f(x),f(p)) < \epsilon.$$

2.1.2 Sequences

Proposition 2.2 (Sequential continuity). $f: X \to Y$ is continuous at $a \in X \iff \forall$ sequence (x_n) in X,

$$x_n \to a \implies f(x_n) \to f(a)$$
.

2.1.3 Open sets

Proposition 2.3. $f: X \to Y$ is continuous at $a \in X \iff$ if \mathcal{O} is any open set containing f(a), then the preimage $f^{-1}(\mathcal{O})$ contains $B(a, \delta)$ for some $\delta > 0$.

2.2 Uniform continuity

Definition 2.4 [Uniform continuity]. $f: X \to Y$ is uniformly continuous on X if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ d(x_1, x_2) < \delta \implies d(f(x_1), f(x_2)) < \epsilon \ \forall x_1, x_2 \in X.$$

Proposition 2.5. Let (X, d) be compact and suppose $f: X \to Y$ is continuous. Then f is uniformly continuous on X.

Remark 2.6. A continuous function on a compact set $K \subseteq X$ is uniformly continuous on X.

2.2.1 Extreme Value Theorem

Proposition 2.7. Let (X, d) be compact and suppose $f: X \to Y$ is continuous. Then f(X) is compact.

Corollary 2.8 (Extreme Value Theorem). Let (X, d) be compact and suppose $f: X \to \mathbb{R}$ is continuous. Then f attains an absolute max and an absolute min on X.

3 Differentiability

3.1 Definition of derivative

3.1.1 $\mathbb{R}^n o \mathbb{R}$

Definition 3.1 (Differentiability). Let $f : \mathbb{R}^n \to \mathbb{R}$. We say f is differentiable at $a \in \mathbb{R}^n$ if $\exists c \in \mathbb{R}^n$ s.t. the function defined by

$$f(a+h) = f(a) + c \cdot h + r(h)$$

satisfies $\lim_{h\to 0} \frac{r(h)}{|h|} = 0$.

$\mathbf{3.1.2} \quad \mathbb{R}^n ightarrow \mathbb{R}^m$

Definition 3.2 (Differentiability). Let $F = (f_1, \dots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$. We say F is differentiable at $a \in \mathbb{R}^n$ if $\exists C \in \mathcal{M}_{m \times n}$ s.t. the function defined by

$$F(a+h) = F(a) + C \cdot h + r(h)$$

satisfies $\lim_{h\to 0} \frac{r(h)}{|h|} = 0$.

3.1.3 $V \rightarrow W$

Definition 3.3 (Differentiability). Let $f: V \to W$ where V, W are real normed vector spaces (possibly infinitely dimensional). We say f is differentiable at $a \in V$ if \exists a linear transformation $T_a: V \to W$ s.t. the function defined by

$$f(a+h) = f(a) + T_a(h) + r(h)$$

satisfies $\lim_{h\to 0} \frac{r(h)}{|h|_V} = 0_W$.

3.2 Criterion for differentiability

Theorem 3.4 Let $\mathcal{O} \subseteq \mathbb{R}^n$ be an open set and suppose $f : \mathcal{O} \to \mathbb{R}$. Suppose $f \in C^1(\mathcal{O})$. Then f is differentiable.

3.3 Important tricks

Let $f:(a,b)\to\mathbb{R}$ be C^1 . Then for $x,x+y\in(a,b)$, we have the following tricks.

Trick 3.5 (Using FTC).

$$f(x+y) - f(x) = \left(\int_0^1 f'(x+ty)dt\right)y.$$

Trick 3.6 (Using MVT).

$$f(x+y) - f(x) = f'(c)y$$

for some c between x, x + y.

3.4 The Chain Rule

Theorem 3.7 (The Chain Rule). Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $x \in \mathbb{R}^n$. Let $G: \mathbb{R}^m \to \mathbb{R}^k$ be differentiable at $z \equiv F(x)$. Then $H = G \circ F: \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at X and

$$DH(x) = DG(F(x)) \cdot DF(x),$$

where

$$D(F(a)) = \begin{pmatrix} \nabla f_1(a) \\ \vdots \\ \nabla f_m(a) \end{pmatrix}.$$

3.5 Clairaut's Theorem

Theorem 3.8 (Clairaut's Theorem). Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be C^2 . Then

$$\partial_j \partial_k F(x) = \partial_k \partial_j F(x) \, \forall x.$$

3.6 Taylor's Theorem

We first introduce the multi-index notation.

3.6.1 Multi-index notation

Consider $X = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Definition 3.9 (Multi-index notation).

- 1. A multi-index is an *n*-tuple $\alpha = (\alpha_1, \dots, \alpha_n)$ where $\alpha_j \in \mathbb{N}_0$.
- 2. Define $x^{\alpha} \equiv x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$. In addition, define $x_j^0 \equiv 1$ even if $x_j = 0$.
- 3. The order of α is $|\alpha| \equiv \alpha_1 + \cdots + \alpha_n$.
- 4. Define $\alpha! \equiv \alpha_1! \alpha_2! \cdots \alpha_n!$. In addition, define $0! \equiv 1$.

Remark 3.10 (Polynomial). Any polynomial p(x) of order $\leq m$ can be written as

$$p(x) = \sum_{|\alpha| \le m} c_{\alpha} x^{\alpha}$$
 where c_{α} constant.

Definition 3.11. Let

$$D = (\partial_{x_1}, \cdots, \partial_{x_n}) = (\partial_1, \cdots, \partial_n).$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ and suppose f is C^m . We define

$$D^{\alpha} = \partial_1^{\alpha_1} \circ \dots \circ \partial_n^{\alpha_n}.$$

3.6.2 Multinomial Theorem

We first recall the Binomial Theorem.

Theorem 3.12 (Binomial Theorem).

$$(x_1 + x_2)^m = \sum_{j=0}^m \frac{m!}{j!(m-j)!} x_1^{m-j} x_2^j.$$

Theorem 3.13 (Multinomial Theorem).

$$(x_1 + \dots + x_n)^m = \sum_{|\alpha| = m} \frac{m!}{\alpha!} x^{\alpha}.$$

3.6.3 Taylor's Theorem

We first recall the single variate Taylor's Theorem.

Theorem 3.14 (Taylor's Theorem). Let $m \in \mathbb{N}$. Let $f : \mathbb{R} \to \mathbb{R}$ and suppose $f \in C^{m+1}$. Let $a, x \in \mathbb{R}$. We have

$$f(x) = \sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-a)^{m+1},$$

where ξ is strictly between a, x.

Theorem 3.15 (Taylor's Theorem). Let $m \in \mathbb{N}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ and suppose $f \in C^{m+1}$. Let $a, x \in \mathbb{R}^n$. We have

$$f(x) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(a)}{\alpha!} (x - a)^{\alpha} + \sum_{|\alpha| = m+1} \frac{D^{\alpha} f(\xi)}{\alpha!} (x - a)^{\alpha},$$

where ξ is strictly between a, x, i.e., on the open segment joining a and x.

4 Inverse and Implicit Function Theorems

4.1 Contraction Mapping Theorem

Consider the metric space (X, d).

Definition 4.1 (Contraction). A map $\phi: X \to X$ is a contraction if $\exists 0 < c < 1 \text{ s.t.}$

$$d(\phi(x) - \phi(y)) \le cd(x, y) \ \forall x, y \in X.$$

Theorem 4.2 (Contraction Mapping Theorem). Let (X, d) be a nonempty and complete metric space. Suppose $\phi : X \to X$ is a contraction. Then \exists a unique $x \in X$ s.t. $\phi(x) = x$ and we call x a fixed point.

4.2 Inverse Function Theorem

4.2.1 Between euclidean space

Theorem 4.3 (Inverse Function Theorem). Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 on \mathbb{R}^n . Let $a \in \mathbb{R}^n$. We have the following.

- 1. If $f'(a) \in \mathcal{M}_{n \times n}$ is invertible, then \exists open sets $U \ni a$ and $V \ni f(a) = b$ s.t. $f: U \to V$ is a C^1 -diffeomorphism, i.e., f is one-to-one, onto, and both f and f^{-1} are C^1 .
- 2. Let $g = f^{-1}: V \to U$ then g is C^1 and

$$g'(f(x)) = [f'(x)]^{-1} \ \forall x \in U$$

4.2.2 Between normed real vector spaces

Theorem 4.4 (Inverse Function Theorem). Let V be a finitely dimensional real normed vector space. Suppose $f: V \to V$ is C^1 on V. Let $a \in V$.

Then if $f'(a) \in L(V, V)$ is invertible, then \exists open sets $U_1 \ni a$ and $U_2 \ni f(a) = b$ s.t. $f: U_1 \to U_2$ is a C^1 -diffeomorphism.

4.2.3 Important usages of the Inverse Function Theorem

TLDR: level sets in \mathbb{R}^n can be parametrized using n-1 parameters.

Example 4.5 (Surface flattening). Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. Let $S = \{x \in \mathbb{R}^n : \phi(x) = 0\}$. Suppose $a \in S$, i.e., $\phi(a) = 0$ and $\nabla \phi(a) \neq 0$. Without loss of generality, assume $\phi_{x_n} \neq 0$. We want to show \exists open sets $U \ni a, V \ni 0$ and a C^1 function $\psi : U \to V$ s.t.

$$\psi(a) = 0 \text{ and } \psi(S \cap U) = \{ y \in V : y_n = 0 \}.$$

Note: intuitively, by change of coordinates from $x = (x_1, \dots, x_n)$ to $y = (y_1, \dots, y_n)$, the level "surface" S in \mathbb{R}^n_x is "flattened" to a "plane" in \mathbb{R}^n_y where $y_n = 0$.

Proof. Define

$$\psi(x) = (x_1 - a_1, \cdots, x_{n-1} - a_{n-1}, \phi(x)).$$

Note that ψ is apparently C^1 and $\psi(a)=0$. In addition, it is easy to verify that

$$\det \psi'(a) = \begin{vmatrix} I_{(n-1)\times(n-1)} & 0\\ 0 & \phi_{x_n}(a) \end{vmatrix} = \phi_{x_n}(a) \neq 0.$$

Therefore, \exists open sets $U \ni a, V \ni 0$ s.t. $\psi : U \to V$ is a C^1 -diffeomorphism. Lastly, since $S \cap U = \{x \in U : \phi(x) = 0\}, \ \psi(S \cap U) = \{y \in V : y_n = 0\}.$

Example 4.6 (Surface parametrization). From Example 5.5, we can define r(t) where $t = (t_1, \dots, t_{n-1}) \in \mathbb{R}^{n-1}$ by $r(t) = \psi^{-1}(t_1, \dots, t_{n-1}, 0)$ for t in a small enough $I \ni 0$. Note: this can also be done using the Implicit Function Theorem.

4.3 Implicit Function Theorem

Theorem 4.7 (Implicit Function Theorem). Let $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$ be C^1 . In addition, we write f(x,y) with $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Suppose f(a,b) = 0 and assume $D_x f(a,b) \equiv A_x$ is invertible. Then

1. \exists open sets $U \ni (a,b)$ in \mathbb{R}^{n+m} and open sets $W \ni b$ in \mathbb{R}^m and C^1 function $g: W \to \mathbb{R}^n$ s.t.

$$\{(x,y) \in U : f(x,y) = 0\} = \{(g(y),y) : y \in W\}.$$

Note: the former is a level set of f whereas the latter is the graph of g on W. Intuitively, a level set of $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$ can be locally represented by a function $g: \mathbb{R}^m \to \mathbb{R}^n$ under certain assumptions. This is not mathematically rigorous but one can think of this as: once n parameters are determined, one is only left with m "degrees of freedom" to parametrize the level set with.

2. If $A_y = D_y f(a, b)$, then $g'(b) = -A_x^{-1} A_y$.

Remark 4.8 (Special case). Let $\phi \in C^1(\mathbb{R}^3, \mathbb{R}^1)$. Let $S = \{x \in \mathbb{R}^3 : \phi(x) = 0\}$. Assume $\nabla \phi(a) \neq 0$. Without loss of generality, assume $\phi_{x_3}(a) \neq 0$. Implicit Function Theorem implies that \exists open set $U \ni a = (a_1, a_2, a_3)$ in \mathbb{R}^3 and open set $W \ni (a_1, a_2)$ in \mathbb{R}^2 and a C^1 function $g : W \to \mathbb{R}$ s.t.

$$U \cap S = \{(x_1, x_2, g(x_1, x_2)) : (x_1, x_2) \in w\}.$$

4.4 Lagrange multipliers

We consider the case with one constraint.

Proposition 4.9 (Lagrange multiplier). Let $f, g \in C^1(\mathbb{R}^3, \mathbb{R})$. Let $S = \{x \in \mathbb{R}^3 : g(x) = 0\}$. Let $a \in S$ and assume $\nabla g(a) \neq 0$. If $f|_S$ has a local maximum at $a \in S$, then $\exists \lambda \in \mathbb{R}$ s.t.

$$\nabla f(a) = \lambda g(a).$$

5 Riemann integral

5.1 Integration

Let $f : \mathcal{R} \to \mathbb{R}$ bdd. Let $\mathcal{P} = \{R_1, \dots, R_N\}$ be a partition of \mathcal{R} . **Definition 5.1** (Upper and lower sums). The upper sum of f associated with \mathcal{P} is given by

$$U(f, \mathcal{P}) = \sum_{i=1}^{N} (\sup_{R_j} f) V(R_j).$$

The lower sum of f associated with \mathcal{P} is given by

$$L(f, \mathcal{P}) = \sum_{i=1}^{N} (\inf_{R_j} f) V(R_j).$$

Definition 5.2 (Upper and lower integrals). The upper integral of f is given by

$$\overline{I}(f) = \inf_{\text{all } \mathcal{P}} U(f, \mathcal{P}).$$

The lower integral of f is given by

$$\underline{I}(f) = \sup_{\text{all } \mathcal{P}} L(f, \mathcal{P}).$$

Definition 5.3 (Riemann integrable). Let $f : \mathcal{R} \to \mathbb{R}$ bdd. We say f is Riemann integrable on \mathcal{R} if

$$\underline{I}(f) = \overline{I}(f).$$

Proposition 5.4 (The criterion). Suppose $f: \mathcal{R} \to \mathbb{R}$ bdd. Then

$$f \in \text{Riem}(\mathcal{R}) \iff \forall \epsilon > 0 \; \exists \mathcal{P} \text{ s.t. } U(f,\mathcal{P}) - L(f,\mathcal{P}) < \epsilon.$$

Proposition 5.5. Let f be cts on \mathcal{R} , then $f \in \text{Riem}(\mathcal{R})$.

5.2 Jordan content

Notation 5.6 (Characteristic function). Let $S \subseteq \mathcal{R}$. Let $\chi_S : \mathcal{R} \to \mathbb{R}$ be

$$\chi_S(x) = \begin{cases} 1 & x \in S \\ 0 & x \in \mathcal{R} \setminus S \end{cases}.$$

Definition 5.7 (Upper and lower content). The upper content of S is given by

$$\operatorname{cont}^{+}(S) = \overline{I}(\chi_{S}) = \inf_{\mathcal{P}} \left\{ \sum_{j=1}^{N} (\sup_{R_{j}} \chi_{S}) V(R_{j}) \right\}$$
$$= \inf_{\mathcal{P}} \left\{ \sum_{j=1}^{N} V(R_{j}) : R_{j} \in \mathcal{P}, R_{j} \cap S \neq \emptyset \right\}$$
$$= \inf_{\mathcal{P}} \left\{ \sum_{j=1}^{N} V(R_{j}) : R_{j} \in \mathcal{P}, S \subseteq R_{1} \cup \dots \cup R_{N} \right\}.$$

The lower content of S is given by

$$\operatorname{cont}_{-}(S) = \underline{I}(\chi_{S}) = \sup_{\mathcal{P}} \left\{ \sum_{j=1}^{N} (\inf_{R_{j}} \chi_{S}) V(R_{j}) \right\}$$
$$= \sup_{\mathcal{P}} \left\{ \sum_{j=1}^{N} V(R_{j}) : R_{j} \in \mathcal{P}, R_{1} \cup \dots \cup R_{N} \subseteq S \right\}.$$

Definition 5.8 (Jordan content). We say S has content if

$$\operatorname{cont}^+(S) = \operatorname{cont}_-(S) \iff \chi_S \in \operatorname{Riem}(\mathcal{R}).$$

Definition 5.9 (Closure). \overline{S} is the smallest closed set containing $S \iff \overline{S} = \{ p \in X : \exists x_n \in S \text{ with } x_n \to p \}.$

Definition 5.10 (Interior). \mathring{S} is the largest open set contained in $S \iff$

$$\mathring{S} = \{ x \in S : \exists \delta > 0 \text{ s.t. } B(x, \delta) \subseteq S \}.$$

Definition 5.11 (Boundary).

$$bS = \overline{S} \setminus \mathring{S} = \{ p \in X : \forall \delta > 0, B(p, \delta) \text{ meets both } \overline{S}, S^c \}.$$

Proposition 5.12.

$$S \subseteq \mathcal{R}$$
 has content \iff cont⁺ $(bS) = 0 \iff$ cont₋ $(bS) = 0$.

Definition 5.13. If $S \subseteq \mathcal{R}$ and $\text{cont}^+(S) = 0$, we say S is nil.

Proposition 5.14 (Continuous except on a nil set). Let $f : \mathcal{R} \to \mathbb{R}$ bdd. Let $S = \{x \in \mathcal{R} : f \text{ is discontinuous at } x\}$. If cont(S) = 0, then $f \in \text{Riem}(\mathcal{R})$.

Definition 5.15 (Integration on sets with content). Let $K \subseteq \mathcal{R}$ be closed and with content, i.e., bK is nil. Let $f: K \to \mathbb{R}$ cts. Let

$$\tilde{f}(x) = \begin{cases} f(x) & x \in K \\ 0 & x \in \mathcal{R} \setminus K \end{cases}$$

By Proposition 1.14, define

$$\int_{K} f dV = \int_{\mathcal{R}} \tilde{f} dV.$$

5.3 Riemann sums

Definition 5.16 (Riemann sums). Let $f: \mathcal{R} \to \mathbb{R}$ bdd.

a) Let \mathcal{P} be a partition of \mathcal{R} . Pick $x_j \in R_j$. The Riemann sum

$$R(f, \mathcal{P}) = \sum_{R_j \in \mathcal{P}} f(x_j) V(R_j).$$

b) Let $L \in \mathbb{R}$. We say

$$\lim_{|\mathcal{P}| \to 0} R(f, \mathcal{P}) = L$$

if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. for any $|\mathcal{P}| < \delta$, we have $|R(f, \mathcal{P}) - L| < \epsilon$.

c) We say f is Riemann integrable (in the new sense) if $\exists L \in \mathbb{R}$ s.t.

$$\lim_{|\mathcal{P}| \to 0} R(f, \mathcal{P}) = L.$$

Proposition 5.17.

$$f \in \operatorname{Riem}(\mathcal{R}) \text{ and } \int_{\mathcal{R}} f = L \iff f \in \operatorname{Riem}_2(\mathcal{R}) \text{ and } \lim_{|\mathcal{P}| \to 0} R(f, \mathcal{P}) = L.$$

5.4 Fubini's Theorem

Proposition 5.18 (Modulus of continuity). Let (X, d) be a metric space. Then, $f: X \to \mathbb{R}$ is uniformly cts $\iff \exists$ monotonic function $\omega: [0, 1) \to [0, \infty)$ s.t. if $\delta \searrow 0$ then $\omega(\delta) \searrow 0$ and s.t. if $d(x, y) \leq \delta < 1$, then $|f(x) - f(y)| \leq \omega(\delta)$.

Theorem 5.19 (Fubini's Theorem). Let $\Sigma \subseteq \mathbb{R}_x^{n-1}$ closed and bounded, has content, i.e., $\operatorname{cont}(b\Sigma) = 0$. Let $g_0, g_1 : \Sigma \to \mathbb{R}$ cts. Assume $g_0 < g_1$ on Σ . Let $\Omega = \{(x, y) \in \mathbb{R}^n, x \in \Sigma, g_0(x) \leq y \leq g_1(x)\}$. Then,

- a) Ω has content.
- b) If $f: \Omega \to \mathbb{R}$ cts, then

$$\phi(x) = \int_{g_0(x)}^{g_1(x)} f(x, y) dy$$

is cts on Σ .

c)
$$\int_{\Omega} f dV_n = \int_{\Sigma} \phi(x) dV_{n-1} = \int_{\Sigma} \int_{g_0(x)}^{g_1(x)} f(x, y) dy dV_{n-1}.$$

5.5 Change of Variable Theorem

Theorem 5.20 (Change of Variable). Let \mathcal{O}_x, Ω_y be open in \mathbb{R}^n . Suppose $G: \mathcal{O} \to \Omega$ is a C^1 diffeomorphism. Let $f: \Omega \to \mathbb{R}$ be continuously compact supported in Ω , i.e., $f \in C_C(\Omega, \mathbb{R})$. Then

$$\int_{\Omega} f(y)dV(y) = \int_{\mathcal{O}} f(G(x))|\det G'(x)|dV(x).$$

6 Surfaces and surface integrals

6.1 Surfaces

Definition 6.1 (C^k m-dimensional surface in \mathbb{R}^n). Suppose $m \leq n$. A set $M \subseteq \mathbb{R}^n$ is a C^k m-dimensional surface in \mathbb{R}^n if: given any $p \in M \exists$ open set U in M with $U \ni p$, open set $\mathcal{O} \subseteq \mathbb{R}^m$ and C^k map $\phi : \mathcal{O} \to \mathbb{R}^n$ which maps bijectively to U with $\phi'(x) : \mathbb{R}^m \to \mathbb{R}^n$ injective $\forall x \in \mathcal{O}$, and $\phi^{-1} : U \to \mathcal{O}$ cts.

We call $\phi: \mathcal{O} \to U$ a coordinate chart and U a coordinate patch on M.

Definition 6.2 (Tanget spaces). Let $M \subseteq \mathbb{R}^n$ be a C^k m-dimensional surface. Let $\phi : \mathcal{O} \to \mathbb{R}^n$ be a chart. Say $\phi(x_0) = p$. Recall $\phi'(x_0) : \mathbb{R}^m \to \mathbb{R}^n$ injective. Define

$$T_pM = \text{Range of } \phi'(x_0) : \mathbb{R}^m \to \mathbb{R}^n.$$

6.2 Surface integrals

Definition 6.3 (Metric tensor). Let $\mathcal{O} \subseteq \mathbb{R}^m$ open with $m \leq n$. Let $\phi : \mathcal{O} \to \mathbb{R}^n$ be a C^1 chart on surface $M \subset \mathbb{R}^n$.

a) Define

$$G(x) = \phi'(x)^T \phi'(x) = (G_{jk}(x))_{j,k=1}^m$$

to be the metric tensor of surface M on $U = \phi(\mathcal{O})$.

b) Define $g(x) = \det G(x)$.

Definition 6.4 (Surface integral). Suppose $f: M \to \mathbb{R}$ cts, supp $f \subseteq U = \phi(\mathcal{O})$ cpct. Define

$$\int_{M} f dS = \int_{\mathcal{O}} f \circ \phi(x) \sqrt{g(x)} dV(x).$$

6.3 Jordan content on surfaces

Definition 6.5 (Riem $_C(M)$).

a) Suppose $f: U \to \mathbb{R}$ bdd with supp $f \subseteq U$ cpct. Then say $f \in \operatorname{Riem}_{C}(U)$ if $f \circ \phi \in \operatorname{Riem}_{C}(\mathcal{O})$. If this is so, define

$$\int_{U} f dS = \int_{\mathcal{O}} (f \circ \phi) \sqrt{g} dx.$$

b) Let $f: M \to \mathbb{R}$ bdd with compact support. We say $f \in \operatorname{Riem}_{\mathbb{C}}(M)$ if \exists a finite cover of supp f by coordinate patches $\phi_i : \mathcal{O}_i \to U_i$ and partition of unity $\{\rho_i\}$ subordinate to $\{U_i\}$ s.t. $f\rho_i \in \operatorname{Riem}_{\mathbb{C}}(U_i)$. Define

$$\int_{M} f dS = \sum_{i=1}^{N} \int_{U_{i}} f \rho_{i} dS.$$

Definition 6.6 (m-dimensional Jordan surface content). Let $\Sigma \subseteq M$ where $\overline{\Sigma}$ is cpct. We say Σ has m-dimensional Jordan surface content if $\chi_{\Sigma} \in \text{Riem}_{C}(M)$, in which case, define the m-dimensional Jordan surface content

$$A_m(\Sigma) = \int_M \chi_{\Sigma} dS.$$

Proposition 6.7 Let $f: M \to \mathbb{R}$ bdd with compact support on M. Let $\Sigma = \{x \in M : \text{fis discontinuous at } x\}$. If $A_m(\Sigma) = 0$, then $f \in \text{Riem}_C(M)$.

6.4 Maps between surfaces

Let M_m, N_l be C^1 surfaces in \mathbb{R}^n . Let $f: M \to N$. We give two equivalent definitions of C^1 maps from M to N.

Definition 6.8 (Using extensions). We say f is C^1 if $\forall p \in M \exists$ open set $U \ni p$ in \mathbb{R}^n s.t. $f|_{M \cap U}$ extends to a C^1 function $\tilde{f}: U \to \mathbb{R}^n$.

Definition 6.9 (Using charts). Let $\phi : \mathcal{O} \to U \subseteq M$, $\psi : \Omega \to V \subseteq N$ be C^1 charts. Define $F = \psi^{-1} \circ f \circ \phi : \mathcal{O} \to \Omega$. We say f is C^1 if $F : \mathcal{O} \to \Omega$ is C^1 for any such pair of charts.

Let f be C^1 . We want to define $f'(p): T_pM \to T_{f(p)}N$ s.t. f'(p) agrees with the old definition and follows the Chain Rule. We give two definitions below.

Definition 6.10 (Using extensions). Let \tilde{f} be a C^1 extension of f to an open set $U \ni p$ in \mathbb{R}^n . We define

$$f'(p) = \tilde{f}'(p)|_{T_pM}.$$

Definition 6.11 (Using charts). Define $h = \psi^{-1} \circ f \circ \phi$ as in Definition 2.9. Suppose $\phi(x_0) = p \in M, \psi(y_0) = f(p) \in N, y_0 = h(x_0)$. We define

$$f'(p) = \psi'(y_0) \circ h'(x_0) \circ (\phi'(x_0))^{-1}.$$

7 Multilinear forms on vector spaces

7.1 Multilinear forms

Definition 7.1 (Multilinear k-forms). A multilinear k-form on V is a function $\alpha: V^k \to \mathbb{R}$ that is linear in each argument when the others are held fixed.

Write $\mathcal{T}^k(V)$ for the vector space of all multilinear k-forms on V.

Definition 7.2 (Tensor product). If $\alpha \in \mathcal{T}^p(V)$ and $\beta \in \mathcal{T}^q(V)$, we define the tensor product $\alpha \otimes \beta \in \mathcal{T}^{p+q}(V)$ by

$$\alpha \otimes \beta(v, w) = \alpha(v)\beta(w)$$
 for $v \in V^p, w \in V^q$.

Definition 7.3 (Pullbacks). Let $A: V \to W$ be a linear transformation and suppose $\beta \in \mathcal{T}^k(W)$. Then, we define $A^*\beta \in \mathcal{T}^k(V)$ by

$$A^*\beta(v) = \beta(Av).$$

Definition 7.4 (Basis and dual basis). Let $B = \{v_1, \dots, v_n\}$ be a basis of V. Let $\omega_i \in \mathcal{T}^1(V)$ be the linear functional satisfying

$$\omega_i(v_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}.$$

Then, $B' = \{\omega_1, \dots, \omega_n\}$ is a basis of $\mathcal{T}^1(V)$.

7.2 Alternating mutilinear forms

Definition 7.5 (Alternating multilinear k-forms). A multilinear k-form α is alternating if the sign of α is reversed whenever two arguments are transposed.

We denote by $\Lambda^k(V) \subseteq \mathcal{T}^k(V)$ the subspace of alternating multilinear k-forms.

Definition 7.6 (Wedge product). For $\alpha \in \Lambda^p(V)$ and $\beta \in \Lambda^q(V)$, we define the wedge product $\alpha \wedge \beta \in \Lambda^{p+q}(V)$ by

$$\alpha \wedge \beta = \text{Alt}(\alpha \otimes \beta).$$

Proposition 7.7 (Basis of $\Lambda^k(V)$)

- a) Let \mathcal{I}_k denote the set of all k-tuples $I=(i_1,\cdots,i_k)$, where each $i_p\in\{1,\cdots,n\}$.
- b) Suppose dim V = n and let $B' = \{\omega_i : i = 1, \dots, n\}$ be a basis of $\mathcal{T}^1(V)$. For $I = (i_1, \dots, i_k) \in \mathcal{I}_k$, we set

$$\omega_{I,\otimes} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_k} \in \mathcal{T}^k(V).$$

- c) Let $\omega_I = \text{Alt}\omega_{I,\otimes} = \omega_{i_1} \wedge \cdots \wedge \omega_{i_k} \in \Lambda^k(V)$.
- d) If $k \leq n$, let $\mathcal{I}_{k,\nearrow} \subseteq \mathcal{I}_k$ denote the subset of k-tuples I satisfying $i_1 < \cdots < i_k$.

Suppose dim V = n. Let $k \leq n$. A basis of $\Lambda^k(V)$ is given by

$$\{\omega_I: I \in \mathcal{I}_{k,\nearrow}\}.$$

7.3 Determinant

Definition 7.8 (Determinant). Let $\{e_i : i = 1, \dots, n\}$ be the standard basis of \mathbb{R}^n . We denote by det the unique element of $\Lambda^n(\mathbb{R}^n)$ such that $\det(e_1, \dots, e_n) = 1$. Let $B' = \{\omega_i : i = 1, \dots, n\}$ be the dual basis of the standard basis of \mathbb{R}^n . Then

$$\det = \omega_1 \wedge \cdots \wedge \omega_n.$$

Proposition 7.9 (Classical formula for determinant). Let $a_j \in \mathbb{R}^n$. Write $a_j = (a_{1j}, \dots, a_{nj})$. Then,

$$\det(a_1, \cdots, a_n) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} \cdots a_{n\sigma(n)}.$$

Definition 7.10 (Determinant of a linear transformation). Suppose dim $V = n, B = \{v_1, \dots, v_n\}$ is a basis of V, and $B' = \{\omega_1, \dots, \omega_n\}$ is the dual basis of $\Lambda^1(V)$. Suppose $T: V \to V$ is a linear transformation. Then

$$T^*(\omega_1 \wedge \cdots \wedge \omega_n) = (\det T)\omega_1 \wedge \cdots \wedge \omega_n.$$

7.4 Orientation of a vector space

We define equivalence relation on $\Lambda^k(V) \setminus \{0\}$ by declaring $\alpha \sim \beta$ when α is a positive scalar multiple of β . If $\gamma \in \Lambda^k(V) \setminus \{0\}$ is a given fixed element, we write

$$\Lambda^k(V)\setminus\{0\}=\Lambda^k_+(V)\cup\Lambda^k_-(V),$$

where $\Lambda_+^k(V)$ consists of all β such that $\beta \sim \gamma$ and $\Lambda_-^k(V)$ consists of all β s.t. $\beta \sim -\gamma$.

Definition 7.11 (By choice of ω). Each of the equivalence classes $\Lambda_+^k(V)$, $\Lambda_-^k(V)$ is said to be an orientation of V. Any element $\omega \in \Lambda_+^k(V)$ is said to determine the positive orientation.

Proposition 7.12 (By choice of ordered basis). Let $B = \{v_1, \dots, v_k\}$ be an ordered basis of V. We say B fixes the same orientation as ω if

$$\omega(v_1,\cdots,v_k)>0.$$

8 Differential forms

8.1 Forms

Definition 8.1 (Alternating k-form on a surface). An alternating k-form on surface M is a function ω s.t. for $p \in M$ we have

$$\omega(p) \in \Lambda^k(T_pM),$$

i.e.,

$$\omega: M \to \bigcup_{p \in M} \Lambda^k(T_p M).$$

Definition 8.2 (Differential forms on a surface). If ω is smooth, then we say ω is a differential k-form on M. We write $\omega \in \Lambda^k(M)$. If k = 0, define $\Lambda^0(M) = C^{\infty}(M, \mathbb{R})$.

Proposition 8.3 (Properties of differential forms).

a) If $\omega_1, \omega_2 \in \Lambda^k(M)$, then $\omega_1 + \omega_2 \in \Lambda^k(M)$ given by

$$(\omega_1 + \omega_2)(p) = \omega_1(p) + \omega_2(p).$$

b) If $c \in \mathbb{R}$, then $c\omega_1 \in \Lambda^k(M)$ given by

$$(c\omega_1)(p) = c\omega_1(p).$$

c) Let $\omega \in \Lambda^p(M), \theta \in \Lambda^q(M)$. Define $\omega \wedge \theta \in \Lambda^{p+q}(M)$ given by

$$(\omega \wedge \theta)(p) = \omega(p) \wedge \theta(p).$$

If $\omega \in \Lambda^0(M)$, define $\omega \wedge \theta = \omega \theta \in \Lambda^q(M)$ where

$$(\omega\theta)(p) = \omega(p)\theta(p).$$

Definition 8.4 (Pullbacks). Let M, N be smooth surfaces in \mathbb{R}^n . Suppose $f: M \to N$ is $C^{\infty}, p \in M, f(p) \in N, f'(p) : T_pM \to T_{f(p)}N$. Let $\omega \in \Lambda^k(N)$. Define $f^*\omega \in \Lambda^k(M)$ by

$$(f^*\omega)(p) = \begin{cases} f'(p)^*\omega(f(p)) & k \ge 1\\ \omega \circ f & k = 0 \end{cases}$$

Proposition 8.5 (Properties of pullbacks). Let $f: M \to N, h: P \to M$, then $f \circ h: P \to N$.

- a) $f^*(\omega_1 + \omega_2) = f^*\omega_1 + f^*\omega_2$.
- b) $f^*(\omega \wedge \theta) = f^*\omega \wedge f^*\theta$.
- c) $(f \circ h)^*\omega = h^*f^*\omega$ where $\omega \in \Lambda^k(M)$.

8.2 Differentials

Definition 8.6 (Differentials). Let $\omega \subseteq \mathbb{R}^n$ open and $x_0 \in \mathcal{O}$. Suppose $f \in C^{\infty}(\mathcal{O}, \mathbb{R}) = \Lambda^0(\mathcal{O})$. Since

$$f: \mathcal{O} \to \mathbb{R}$$
,

we have

$$f'(x_0): T_{x_0}\mathcal{O} \to T_{f(x_0)}\mathbb{R} = \mathbb{R}.$$

Hence, $f'(x_0) \in \Lambda^1(T_{x_0}\mathcal{O}) \ \forall x_0 \in \mathcal{O}$. We write

$$f'(x_0) = df(x_0), f' = df.$$

Notice the differential 1-form on \mathcal{O} $df \in \Lambda^1(\mathcal{O})$. Call it the differential of f.

Proposition 8.7. Let $x_0 \in \mathcal{O}, v \in T_{x_0}\mathcal{O} = \mathbb{R}^n$,

$$df(x_0)v = f'(x_0)v = \nabla f(x_0) \cdot v.$$

In particular, $dx_i \in \Lambda^1(\mathcal{O})$. We saw

$$dx_i(x_0)e_j = \nabla x_i(x_0) \cdot e_j = \delta_{ij}.$$

Hence, $\{dx_1(x_0), \dots, dx_n(x_0)\}$ is a basis of $\Lambda^1(T_{x_0}\mathcal{O})$ dual to $\{e_1, \dots, e_n\}$. So,

$$df(x_0) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(x_0) dx_j(x_0).$$

Definition 8.8 (Smooth forms on \mathcal{O}). Let $\omega \in \Lambda^k(\mathcal{O})$, then $\omega(x_0) \in \Lambda^k(T_{x_0}\mathcal{O})$. We can write

$$\omega = \sum_{I \nearrow} a_I dx_I = \sum_{I \nearrow} a_I dx_{i_1} \wedge \cdots \wedge dx_{i_k} \in \Lambda^k(\mathcal{O}).$$

We say ω is smooth and write $\omega \in \Lambda^k(\mathcal{O})$ when a_I are smooth (C^{∞}) .

Definition 8.9 (Forms on surfaces). Let $f \in \Lambda^0(M) = C^{\infty}(M, \mathbb{R})$. Define $df \in \Lambda^1(M)$ s.t. for $p \in M$,

$$df(p) = f'(p) \in \Lambda^1(T_pM).$$

Definition 8.10 (Smooth forms on surfaces). We say ω is smooth, $\omega \in \Lambda^k(M)$ when a_I are smooth for

$$\omega = \sum_{I\nearrow} a_I dx_I = \sum_{I\nearrow} a_I dx_{i_1} \wedge \cdots \wedge dx_{i_k} \in \Lambda^k(M).$$

Proposition 8.11. Let M, N be smooth surfaces in \mathbb{R}^n . Let $F: M \to N, F \in C^{\infty}(M, N), h: N \to \mathbb{R}, h \in C^{\infty}(N, \mathbb{R})$. Hence, $h \circ F: M \to \mathbb{R}$. For $dh \in \Lambda^1(N)$, we have

$$F^*(dh) = d(F^*h).$$

Remark 8.12 (Dual role of x_i). Proposition 4.11 implies that for coordinate chart $\phi: \mathcal{O} \to U$, where $\phi(x_0) = p$, we have

$$dx_i(x_0) = d(\phi^*x_i)(x_0) = \phi^*dx_i(x_0).$$

Here, the first occurrence of $x_i : \mathcal{O} \to \mathbb{R}$ is the coordinate function on \mathcal{O} ; the last occurrence of $x_i : M \to \mathbb{R}$ is the coordinate function on M.

Proposition 8.13. Let $\phi: \mathcal{O}_x \to U \subseteq M$ and $\psi: \Omega_y \to U$ be smooth charts, and define $F: \mathcal{O} \to \Omega$ by $F = \psi^{-1} \circ \phi$. Let $\omega = ady_1 \wedge \cdots dy_m \in A^m(U)$.

- a) $\psi^*\omega = (a \circ \psi)dy_1 \wedge \cdots \wedge dy_m$.
- b) $\phi^*\omega = (a \circ \phi) \det F' dx_1 \wedge \cdots \wedge dx_m$.
- c) $F^*\psi^*\omega = \phi^*\omega$.

d)
$$\omega = (\phi^{-1})^* \phi^* \omega = a \det(F' \circ \phi^{-1}) dx_1 \wedge \dots \wedge dx_m$$
 and
$$\omega = (\psi^{-1})^* \psi^* \omega = a dy_1 \wedge \dots \wedge dy_m.$$

8.3 Orientation of a surface

Definition 8.14 (Orientation of M_m). Let M_m be smooth. We say M_m is orientable if \exists a nowhere vanishing element $\omega \in \Lambda^m(M_m)$, i.e., $\omega(p) \neq 0 \ \forall p \in M$.

Definition 8.15 (Local orientation using charts). Not all surfaces are orientable, e.g., Mobius strip. But we can always orient a coordinate patch $U \subseteq M_m$. Take \mathcal{O} to be oriented by $dx_1 \wedge \cdots \wedge dx_m$ where $x_j \in C^{\infty}(\mathcal{O}, \mathbb{R})$. Then, we can take

$$(\phi^{-1})^* dx_1 \wedge \dots \wedge dx_m = dx_1 \wedge \dots \wedge dx_m$$

to be the orientation of U where $x_j \in C^{\infty}(U, \mathbb{R})$.

8.4 Integration of forms

Definition 8.16 (Integration of forms on \mathcal{O}). Take $M_m = \mathcal{O}_x \subseteq \mathbb{R}^m$ open. Then, $dx_1 \wedge \cdots \wedge dx_m$ where $x_j \in C^{\infty}(\mathcal{O}, \mathbb{R})$ orients \mathcal{O} . Let $\omega \in \Lambda^m(\mathcal{O})$ have compact support in \mathcal{O} . Then, we can write $\omega = adx_1 \wedge \cdots \wedge dx_m$ where $a \in C_C^{\infty}(\mathcal{O}, \mathbb{R})$. We define

$$\int_{M_{m}=\mathcal{O}} \omega = \int_{\mathcal{O}} a(x)dV(x).$$

Definition 8.17 (Integration of forms on M_m with compact support on U). Let M_m be an oriented smooth surface. Choose $\psi: \Omega_y \to U$ s.t. $dy_1 \wedge \cdots \wedge dy_m$ gives the prescribed orientation. We can write $\omega = ady_1 \wedge \cdots \wedge dy_m$ where $y_j \in C^{\infty}(U, \mathbb{R})$. We define

$$\int_{M} \omega = \int_{\Omega_{y}} \psi^{*} \omega$$

$$= \int_{\Omega_{y}} (a \circ \psi) dy_{1} \wedge \cdots \wedge dy_{m} \text{ where } y_{j} \in C^{\infty}(\mathcal{O}, \mathbb{R})$$

$$= \int_{\Omega_{y}} a(\psi(y)) dV(y).$$

Definition 8.18 (Integration of forms on M_m with compact support on M_m). Let $\omega \in \Lambda_C^m(M_m)$. Choose charts $\phi_i : \mathcal{O}_i \to U_i$ s.t.

- a) ϕ_i gives the prescribed orientation on M.
- b) supp $\omega \subseteq \bigcup_{i=1}^k U_i$.

Next, choose a partition of unity $\{\rho_i\}$ subordinate to $\{U_i\}$ on supp ω . We define

$$\int_{M} \omega = \sum_{i=1}^{k} \int_{M} \rho_{i} \omega.$$

9 Generalized Stokes Theorem

9.1 Generalized Stokes Theorem

Theorem 9.1 (Generalized Stokes Theorem). Let M be an oriented m-dimensional surface with boundary. Let $i: \partial M \to M$ be the inclusion map. Let $\omega \in \Lambda_c^{m-1}(M)$. Give ∂M the induced orientation. Then,

$$\int_{M_m} d\omega = \int_{(\partial M)_{m-1}} i^* \omega.$$

Theorem 9.2 (Green's Theorem). Let Ω be a bounded, connected open subset of \mathbb{R}^2 with a smooth boundary $\partial\Omega$ oriented positively. Let $f,g\in C^{\infty}(\mathbb{R}^2,\mathbb{R})$. Then,

$$\int_{\Omega} (g_x - f_y) dx dy = \int_{\partial \Omega} f dx + g dy.$$

Remark 9.3. Let $\omega = fdx + gdy \in \Lambda^1(\Omega)$. Then

$$d\omega = (g_y - f_x)dx \wedge dy \in \Lambda^2(\Omega).$$

Theorem 9.4 (Stokes Theorem). Let S be a smooth compact oriented 2-dimensional surface with boundary in \mathbb{R}^3 . Let $F = (f_1, f_2, f_3) \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$. Give ∂S the induced orientation, and let n be the unit normal vector to S determined by the given orientation of S. Then,

$$\int_{S} (\operatorname{curl} F \cdot n) dS = \int_{\partial S} f_1 dx_1 + f_2 dx_2 + f_3 dx_3.$$

Remark 9.5. Let $\omega = f_1 dx_1 + f_2 dx_2 + f_3 dx_3 \in \Lambda^1(\mathbb{R}^3)$. Then

$$d\omega = g_1 dx_2 \wedge dx_3 + g_2 dx_3 \wedge dx_1 + g_3 dx_1 \wedge dx_2,$$

where $(g_1, g_2, g_3) = \operatorname{curl}(f_1, f_2, f_3)$.

Theorem 9.6 (Divergence Theorem). Let W be a bounded connected open set in \mathbb{R}^3 with smooth boundary ∂W and suppose $F = (f_1, f_2, f_3) \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$. Then,

$$\int_{W} \operatorname{div} F dx dy dz = \int_{\partial W} F \cdot n dS.$$

Remark 9.7. Let $\omega = f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2 \in \Lambda^2(\mathbb{R}^3)$. Then

$$d\omega = \text{div} F dx_1 \wedge dx_2 \wedge dx_3$$
.

9.2 Closed and exact forms

Definition 9.8 (Closed and exact forms). A differential k-form ω on M is closed if $d\omega = 0$ and exact if $\omega = d\theta$ for some $\theta \in \Lambda^{m-1}(M)$.

Proposition 9.9. Every exact form is closed.

Proposition 9.10. Let M be an m-dimensional simply connected smooth surface and $\omega \in \Lambda^1(M)$. If ω is closed, then ω is also exact.

Proposition 9.11. Let M and N be compact oriented smooth surfaces of dimension m, and suppose $M = \partial W$ where W is a compact oriented smooth surface of dimension m+1. Suppose $f: M \to N$ is a smooth map which extends smoothly to all of W. Then for every $\omega \in \Lambda^m(N)$, we have

$$\int_{M} f^* \omega = 0.$$

9.3 Brouwer Fixed Point Theorem

Definition 9.12. Let W be a smooth surface with boundary ∂W . A retraction of W onto its boundary is a map $\phi:W\to\partial W$, no necessarily smooth, such that

$$\phi(p) = p \ \forall p \in \partial W.$$

Theorem 9.13 (No Retraction Theorem). Let W be a compact smooth oriented (m+1)—dimensional surface with nonempty boundary ∂W . There is no smooth retraction.

Theorem 9.14 (Brouwer Fixed Point Theorem). Let $B = \{x \in \mathbb{R}^n : |x| \le 1\}$. Suppose $F : B \to B$ smooth. Then $\exists x \in B \text{ s.t. } F(x) = x$.

Definition 9.15 (Volume form). Let M be an oriented smooth m-dimensional surface and suppose $\phi: \mathcal{O}_x \to U \subset M$ is any orientation-preserving chart on M. We define ω_M on M by setting

$$\omega_M|_U = \sqrt{g \circ \phi^{-1}} dx_1 \wedge \cdots \wedge dx_m,$$

for any such chart, where $g = \det G$, $G(x) = \phi'(x)^t \phi'(x)$.

Remark 9.16. The volume form has property

$$\int_{M} \omega_{M} = \int_{M} dS = \text{vol}(M).$$

10 ODE Theory

We study the general $n \times n$ first-order initial value problem (IVP)

$$\frac{dy}{dt} = F(t, y), \ y(t_0) = y_0. \ (IVP)$$

Theorem 10.1 (Local existence). Consider the IVP. Let $y_0 \in \Omega$, an open subset of \mathbb{R}^n . Let $I \subset \mathbb{R}$ be an open interval containing t_0 .

1. Suppose $F: I \times \Omega \to \mathbb{R}^n$ is continuous.

2. Suppose $\exists L > 0$ s.t.

$$|F(t, y_1) - F(t, y_2)| \le L|y_1 - y_2| \ \forall t \in I, y_i \in \Omega.$$

Then IVP has a C^1 solution on some open interval containing t_0 .

Theorem 10.2 (Uniqueness). Consider the IVP. Let $I \subset \mathbb{R}$ be an open interval.

- 1. Suppose $F: I \times \Omega \to \mathbb{R}^n$ is continuous.
- 2. Suppose $\exists L > 0$ s.t.

$$|F(t, y_1) - F(t, y_2)| \le L|y_1 - y_2| \ \forall t \in I, y_i \in \Omega.$$

Let $I' \subset I$ be an open subinterval containing t_0 on which two solutions y and z are given. Then y = z on I'.

Proposition 10.3 (Uniform local existence). Consider the IVP.

1. Suppose for each compact $K \subseteq \Omega$, there exists $M_K < \infty$ s.t.

$$|F(t,x)| \le M_K \ \forall x \in K, t \in I.$$

2. Suppose for each such K, $\exists L_K < \infty$ s.t.

$$|F(t,x) - F(t,y)| \le L_K |x - y| \ \forall x, y \in K, t \in I.$$

Let $K \subset \Omega$ compact. Then there exists T > 0 s.t. for each $t_0 \in I$ and $y_0 \in K$, a unique solution to IVP exists on $[t_0 - T, t_0 + T]$. We call T a uniform time of existence for $I \times K$.

Remark 10.4. If $F \in C^1(\mathbb{R} \times \mathbb{R}^n)$, then F satisfies uniform local existenace when I is any bounded open interval and Ω is any bounded, convex open set in \mathbb{R}^n .

Proposition 10.5 (Criterion for global existence). Consider the IVP where F satisfies uniform local existence.

Suppose that if $J \subset I$ is any bounded open subinterval containing t_0 on which a C^1 solution y exists, there exists a compact set $K \subset \Omega$ s.t. $y(t) \in K \ \forall t \in J$. Then y extends uniquely to a C^1 solution on I.

Proposition 10.6 (Linear energy estimate). Consider a \mathbb{C}^1 solution to the IVP

$$\frac{dy}{dy} = A(t)y + B(t), \ y(0) = y_0$$

on an interval $I \ni 0$ where $A \in C(I, M(n, \mathbb{R}))$ and $B \in C(I, \mathbb{R}^n)$. If $||A(t)|| \le K \ \forall t \in I$, then y(t) satisfies $\forall t \in I, t \ge 0$:

$$|y(t)|^2 \le e^{(2K+1)t}|y_0|^2 + \int_0^t e^{(2K+1)(t-s)}|B(s)|^2 ds.$$

The same formula holds for $t \in I, t \leq 0$, but with B(s) replaced by B(-s) and t replaced by |t| on the right.

[Uniqueness] Consequently, if y_1 and y_2 are C^1 solutions on I, we must have $y_1 = y_2$.

11 Compactness in function spaces

Remark 11.1. In *any* finite dimensional normed vector space, a set K is compact $\iff K$ is closed and bounded (Heine-Borel). In *any* metric spacel K compact $\implies K$ closed and bounded. However, in most function spaces, the converse of the last statement fails.

Example 11.2. Consider the metric space $C([0,1],\mathbb{R})$ with the metric associated with the sup norm, i.e., $d(f,g) = \sup_{[0,1]} |f(x) - g(x)|$. The set

$${x^n : n = 1, 2, \cdots} \subset B(0, 1) \subset C([0, 1], \mathbb{R}).$$

Observe that $\overline{\{x^n\}}$ is closed (by construction), bounded (by the unit ball), but not compact in $C([0,1],\mathbb{R})$.

For the sake of contradiction, suppose compactness. Then, notice that any subsequence of (x^n) that converges in the above metric, must converge uniformly to a continuous function. But we know $x^n \to f$ point-wise and f is not continuous.

Definition 11.3 (Equicontinuity). Let (X, d) be a compact metric space. Let \mathcal{F} be a family of functions $f: X \to \mathbb{R}$. We say \mathcal{F} is equicontinuous if given any $\epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ \text{s.t.}$ if $d(p,q) < \delta \ \text{then} \ |f(p) - f(q)| < \epsilon \ \forall f \in \mathcal{F}$.

Definition 11.4 (Density). We say A is dense in (X, d) if $\forall \epsilon > 0$ and $p \in X$, $\exists a \in A \text{ s.t. } d(a, p) < \epsilon$.

Proposition 11.5. (X, d) is a compact metric space $\implies X$ has a countable dense subset.

Theorem 11.6 (Arzela-Ascoli Theorem). Let (X, d) be a compact metric space. Consider $C(X, \mathbb{R})$ with its usual sup norm, i.e.,

$$|f| = \sup_{x \in X} |f(x)|.$$

Let a family of functions $K \subset C(X,\mathbb{R})$ be closed, bounded, and equicontinuous. Then K is compact.

12 Density and approximation in function spaces

12.1 Approximate identity

Proposition 12.1 (Differentiation under the integral sign). Let $\Omega \subset \mathbb{R}^2$ open. Let $R = \{(x,t) : a \leq x \leq b, c \leq t \leq d\} \subset \Omega$. Let $f \in C^1(\Omega,\mathbb{R})$. For $x \in (a,b)$ let

$$\phi(x) = \int_{a}^{d} f(x, t)dt.$$

Then,

$$\phi'(x) = \int_{a}^{d} f_x(x,t)dt$$

and ϕ is C^1 on (a, b).

Definition 12.2 (Convolutions). Let $f \in C(\mathbb{R}^n, \mathbb{R})$ and $g \in C_c(\mathbb{R}^n, \mathbb{R})$. Define

$$(f * g)(x) \equiv \int_{\mathbb{R}^n} f(x - y)g(y)dy = \int_{\mathbb{R}^n} f(y)g(x - y)dy.$$

Proposition 12.3.

- a) Let $f \in C(\mathbb{R}^n, \mathbb{R}), g \in C_c^k(\mathbb{R}^n, \mathbb{R})$. Then $f * g \in C^k(\mathbb{R}^n, \mathbb{R})$ and if $|\alpha| \leq k$, $\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g)$.
- b) Let $f \in C^k(\mathbb{R}^n, \mathbb{R}), g \in C_c(\mathbb{R}^n, \mathbb{R})$. Then $f * g \in C^k(\mathbb{R}^n, \mathbb{R})$ and if $|\alpha| \leq k$, $\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g.$

Definition 12.4 (Approximate identities). Fix $g \in C_c^{\infty}(\mathbb{R}^n, \mathbb{R})$ s.t. $g \geq 0$, supp $g \subset \overline{B(0,1)}$, and $\int_{\mathbb{R}^n} g(x) dx = 1$. Define

$$g_k(x) \equiv k^n g(kx), \ k = 1, 2, \cdots$$

So, $g_k \geq 0$, supp $g_k \subset \overline{B(0,\frac{1}{k})}$, and $\int_{\mathbb{R}^n} g_k(x) dx = 1 \ \forall k$. We call (g_k) an approximate identity.

Proposition 12.5. Let $m \geq 0$. Let $f \in C^m(\mathbb{R}^n, \mathbb{R})$. Set

$$f_k(x) \equiv (f * g_k)(x) \in C^{\infty}.$$

For any compact $K \subset \mathbb{R}^n$ and $|\alpha| \leq m$, we have $\partial^{\alpha} f_k \to \partial^{\alpha} f$ uniformly on K. In particular, $f_k \to f$ as $f \to \infty$.

12.2 Frechet (metric) topology

Definition 12.6. Let $\Omega \subset \mathbb{R}^n$ open. Write $\Omega = \bigcup_{j=1}^{\infty} K_j$ as the union of an increasing sequence of compact subsets. For example,

$$K_j = \{x \in \Omega : \operatorname{dist}(x, b\Omega) \ge \frac{1}{j}\} \cap \overline{B(0, j)}.$$

For each j define a seminorm on $C^k(\Omega, \mathbb{R})$ by

$$\rho_j(f) \equiv \sup_{x \in K_j, |\alpha| \le k} |\partial^{\alpha} f(x)|.$$

Finally, for $f, g \in C^k(\Omega, \mathbb{R})$, define

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\rho_j(f-g)}{1 + \rho_j(f-g)}.$$

Remark 12.7.

- a) d is a metric.
- b) Let (f_n) be a sequence in $C^k(\Omega, \mathbb{R})$ and $f \in C^k(\Omega, \mathbb{R})$. Then $f_n \to f$ in the metric space $C^k(\Omega, \mathbb{R})$ if and only if given any compact set $K \subset \Omega$ and multi-index α with $|\alpha| \leq k$, the sequence $\partial^{\alpha} f_n \to \partial^{\alpha} f$ uniformly on K.
- c) $C^k(\Omega, \mathbb{R})$ with the metric d is a complete metric space.

12.3 Stone-Weierstrass Theorem

Theorem 12.8 (Weierstrass Approximation Theorem). Let $f \in C([a, b], \mathbb{R})$. Then, \exists polynomials p_n s.t. $p_n \to f$ uniformly on [a, b] as $n \to \infty$, i.e., the set of all polynomials on [a, b] is dense in $C([a, b], \mathbb{R})$.

Definition 12.9 (Algebra). An algebra of real-valued functions on a set X is a set of functions that is closed under (1) addition, (2) multiplication, and (3) scalar multiplication by \mathbb{R} .

Theorem 12.10 (Stone-Weierstrass Theorem). Let X be a compact metric space. Let $\mathcal{A} \subset C(X,\mathbb{R})$ be a sub-algebra. Suppose $1 \in \mathcal{A}$ and \mathcal{A} separates points, i.e., if $p, q \in X, p \neq q$, then $\exists h_{pq} \in \mathcal{A}$ s.t. $h_{pq}(p) \neq h_{pq}(q)$. Then, the closure of \mathcal{A} in the sup norm, $\overline{\mathcal{A}} = C(X,\mathbb{R})$.

Definition 12.11 (Self-adjoint). An algebra of function $f: X \to \mathbb{C}$ where X is a compact metric space is said to be self-adjoint if $f \in \mathcal{A} \Longrightarrow \overline{f} \in \mathcal{A}$.

Theorem 12.12 (Stone-Weierstrass Theorem (complex version)). Let (X, d) be a compact metric space. Let $\mathcal{A} \subset C(X, \mathbb{C})$ be a self-adjoint sub-algebra. Suppose $1 \in \mathcal{A}$ and \mathcal{A} separates points in X, then $\overline{\mathcal{A}} = C(X, \mathbb{C})$.

Definition 12.13 (Trignometric polynomials). Define the set of all trignometric polynomials to be the set $\{\sum_{|k|\leq N} a_k e^{ik\theta}, N=0,1,2,\cdots,a_k\in\mathbb{C}\}$.

Example 12.14 (Fourier series). Let the set of periodic functions

$$C_p([0, 2\pi,], \mathbb{C}) = \{ f \in C([0, 2\pi], \mathbb{C}), f(0) = f(2\pi) \}.$$

Then the set of all trignometric polynomials is dense in $C_p([0,2\pi],\mathbb{C})$.

13 Lebesgue measure and integration

13.1 σ -algebra

Definition 13.1 (σ -algebra). Let X be a nonempty set. We say $\mathcal{A} \subset \mathcal{P}(X)$ (the power set) is σ -alebra on X if

- 1. if $E_1, E_2, \dots \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$, and
- 2. if $E \in \mathcal{A}$, then $E^c \equiv X \setminus E \in \mathcal{A}$.

Remark 13.2 If $E_1, E_2, \dots \in \mathcal{A}$, then $\bigcap_{j=1}^{\infty} E_j \in A$. (Proof using De Morgan's laws.)

Corollary 13.3. If $\mathcal{E} \subset \mathcal{P}(X)$. Then there is a unique smallest σ -algebra that contains \mathcal{E} , $\sigma(\mathcal{E})$. Call it the σ -algebra generated by \mathcal{E} , where

$$\sigma(\mathcal{E}) = \bigcap \{\sigma - \text{algebra that contain } \mathcal{E}\}.$$

Definition 13.4 (Borel σ -algebra)

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\{\text{open sets in } \mathbb{R}^n\})$$

13.2 Measure

Let X be a nonempty set. Let \mathcal{M} be a σ -algebra on X.

Definition 13.5 (Measure). A measure μ on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ s.t.

- 1. $\mu(\emptyset) = 0$, and
- 2. [Countable additivity] if $E_j \in \mathcal{M}, j = 1, 2, \cdots$ disjoint, then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j).$$

We call (X, \mathcal{M}, μ) a measure space.

Proposition 13.6 (Properties of measures).

- 1. Let $E, F \in \mathcal{M}$. Then $E \subset F \implies \mu(E) \leq \mu(F)$.
- 2. [Subadditivity] Let $E_1, E_2, \dots \in \mathcal{M}$ not necessarily disjoint, then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \le \sum_{j=1}^{\infty} \mu(E_j).$$

3. [Continuity from below] Let $E_1 \subset E_2 \subset \cdots$ where $E_j \in \mathcal{M}$. Then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j).$$

13.3 Lebesgue measure

Definition 13.7 (Outer measure). An outer measure on set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ s.t.

- 1. $\mu^*(\emptyset) = 0$.
- 2. $A \subset B \implies \mu^*(A) \leq \mu^*(B)$.
- 3. $A_i \in \mathcal{P}(X) \implies$

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^*(A_j).$$

Definition 13.8 (Lebesgue outer measure on \mathbb{R}^n).

Let $\mathcal{E} = \{\text{bounded open intervals in } \mathbb{R}^n\}$. An open interval $I \in \mathcal{E}$ has the form

$$I = \{ x \in \mathbb{R}^n : a_i < x_i < b_i, a_i, b_i \in \mathbb{R}^n \}.$$

Let $\lambda: \mathcal{E} \to [0, \infty]$ be defined by the usual volume, i.e.,

$$\lambda(I) = \prod_{j=1}^{n} (b_j - a_j).$$

If $S \subset \mathbb{R}^n$, we define the Lebesgue outer measure

$$m^*(S) \equiv \inf \left\{ \sum_{j=1}^{\infty} \lambda(I_j) : S \subset \bigcup_{j=1}^{\infty} I_j, I_j \in \mathcal{E} \right\}.$$

Theorem 13.9. The restriction of m^* to $\mathcal{B}(\mathbb{R}^n)$ is a measure on $\mathcal{B}(\mathbb{R}^n)$. So, $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), m^*)$ is a measure space.

Definition 13.10 (Lebesgue measureable sets). Define the set of Lebesgue measurable sets

$$\mathcal{L}^n = \{ E \cup F : E \in \mathcal{B}(\mathbb{R}^n), F \subset N \text{ for some } N \in \mathcal{B}(\mathbb{R}^n) \text{ s.t. } m^*(N) = 0. \}$$

Theorem 13.11. The Lebesgue outer measure restricted to the set of Lebesgue measurable sets is a measure, i.e.,

$$m^*|_{\mathcal{L}_n} \equiv m$$

is the Lebesgue measure on \mathbb{R}^n . So, $(\mathbb{R}^n, \mathcal{L}^n, m)$ is a measure space.

13.4 Lebesgue integration

Definition 13.12 (Lebesgue measurable functions). Let $f: (\mathbb{R}^n, \mathcal{L}^n) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We say f is Lebesgue measurable if $f^{-1}(B) \in \mathcal{L}^n \ \forall B \in \mathcal{B}(\mathbb{R})$.

Remark 13.13.

- 1. It is enough to check $f^{-1}((a,b)) \in \mathcal{L}^n \ \forall (a,b)$.
- 2. f, g measurable $\implies f + g, fg$ measurable.
- 3. Limit of a sequence of measurable functions is measurable. Consider $f_j, j = 1, 2, \cdots$. Then $\sup_j f_j, \inf_j f_j, \lim \sup_{j \to \infty} f_j, \lim \inf_{j \to \infty} f_j$ are measurable.

Example 13.14. Let $A \in \mathcal{L}^n$. The characteristic function

$$\chi_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

is measurable. To see this, notice that $\chi_A^{-1}((a,b)) = A$ or A^c or \mathbb{R}^n or \emptyset , which are all measurable.

Definition 13.15 (Simple functions).

a) Consider $(\mathbb{R}^n, \mathcal{L}^n, m)$. A simple function is any $\phi : \mathbb{R}^n \to \mathbb{R}$ of the form

$$\phi = \sum_{j=1}^{\infty} c_j \chi_{A_j}$$

where $c_j \in \mathbb{R}, A_j \in \mathcal{L}^n$.

- b) Let $S^+(\mathbb{R}^n, \mathcal{L}^n, m) = \{\phi \text{ simple}, \phi \ge 0\}.$
- c) Let $\phi \in \mathcal{S}^+$. Define

$$\int_{\mathbb{R}^n} \phi dm = \sum_{j=1}^m c_j m(A_j).$$

Theorem 13.16. Let $f: (\mathbb{R}, \mathcal{L}^n) \to \mathbb{R}$ be measurable, $f \geq 0$. Then, \exists simple functions $\phi_n, n = 1, 2, \cdots$ s.t. $0 \leq \phi_n \nearrow f$ point-wise on \mathbb{R}^n .

Proposition 13.17. Suppose $\phi, \psi \in \mathcal{S}^+, c \geq 0$.

a)
$$\int_{\mathbb{R}^n} c\phi dm = c \int_{\mathbb{R}^n} \phi dm.$$

- b) $\int (\phi + \psi) = \int \phi + \int \psi$.
- c) $\phi \le \psi \implies \int \phi \le \int \psi$.
- d) Fix ϕ . If

$$\mu(A) \equiv \int_{A} \phi dm \equiv \int_{\mathbb{R}^n} \phi \chi_A$$

where $A \in \mathcal{L}^n$, then μ is a measure on \mathcal{L}^n .

Definition 13.18 (Lebesgue integral). Let

$$f \in \mathcal{L}_{+}^{n} \equiv \{f : \mathbb{R}^{n} \to \mathbb{R}, f \text{ measurable}, f \geq 0\}.$$

Define

$$\int_{\mathbb{R}^n} f dm = \sup \left\{ \int_{\mathbb{R}^n} \phi dm : 0 \le \phi \le f, \phi \text{ simple } \right\}.$$

Definition 13.19 (Lebesgue integrable functions \mathbb{L}^1). Suppose $f: \mathbb{R}^n \to \mathbb{R}$ measurable but not necessarily $\geq 0 \ \forall x$. Write $f = f^+ - f^-$ and f^{\pm} measurable.

a) Define

$$\int_{\mathbb{R}^n} f dm = \int_{\mathbb{R}^n} f^+ dm - \int_{\mathbb{R}^n} f^- dm.$$

b) If both $\int_{\mathbb{R}^n} f^{\pm} dm < \infty$, say f is integrable and write

$$f \in \mathbb{L}^1(\mathbb{R}^n, \mathcal{L}^n, m).$$

Remark 13.20.

- a) f integrable $\iff \int |f| dm < \infty$.
- b) Let $A \in \mathcal{L}^n$, $f \in \mathbb{L}^1$. Define

$$\int_A f dm \equiv \int_{\mathbb{R}^n} f \chi_A dm.$$

13.5 Convergence Theorems

Theorem 13.21 (Monotone Convergence Theorem). Let $f_n \in \mathcal{L}_+^m$ be a sequence of non-negative measurable functions. Suppose f_n monotonically increasing, i.e., $f_n \leq f_{n+1} \, \forall n$ and suppose $f(x) = \lim_{n \to \infty} f_n(x)$ point-wise. Then,

$$\lim_{n \to \infty} \int f_n dm = \int (\lim_{n \to \infty} f_n) dm = \int f dm.$$

Theorem 13.22 (Dominated Convergence Theorem). Let $f_n \in \mathbb{L}^1$. Suppose $f_n \to f$ point-wise in \mathbb{R}^n . (Hence, f is measurable.) Suppose $\exists g \in \mathbb{L}^1$ s.t. $|f_n| \leq g \ \forall n$. Then, $f \in \mathbb{L}^1$ and

$$\lim_{n \to \infty} \int f_n dm = \int f dm.$$

Proposition 13.23. Suppose $f_n \in \mathcal{L}_+^n$. Then, it follows immediately from MCT that

$$\int \left(\sum_{i=1}^{\infty} f_i\right) dm = \sum_{i=1}^{\infty} \int f_i dm.$$

Proposition 13.24. Let $\phi \in \mathcal{S}^+(\mathbb{R}^n, \mathcal{L}^n, m)$ be a non-negative simple function. Then, $A \to \int_A \phi dm$ is a measure on \mathcal{L}^m .

Proposition 13.25 (Sets of measure 0 is negligible in Lebesgue integration theory). Let $N \in \mathcal{L}^n$, m(N) = 0, i.e., $\forall \epsilon > 0$, N can be covered by intervals I_i s.t.

$$\sum_{j=1}^{\infty} m(I_j) < \epsilon.$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function. Then,

$$\int_{N} |f| dm = 0.$$

Corollary 13.26. Suppose $f, g : \mathbb{R}^n \to \mathbb{R}$ are in \mathbb{L}^1 and are hence measurable. Suppose f = g except on N (say f = g almost everywhere), where $N \in \mathcal{L}^n$ has m(N) = 0. Then,

$$\int_{\mathbb{R}^n} f - g = \int_N f - g = 0 \implies \int f = \int g.$$

Remark 13.27. Recall

 $\mathbb{L}^{1}(\mathbb{R}^{n},\mathcal{L}^{n},m) = \left\{ \text{Lebesgue measurable functions } f \text{ s.t. } \int |f| < \infty \right\}.$

Notice that $|\cdot|$ is not a norm since we can have $\int |f| = 0$ where $f \neq 0$.

Definition 13.28. Given $f,g\in\mathbb{L}^1$, say $f\sim g\iff f=g$ almost everywhere. Define

$$L^1(\mathbb{R}^n, \mathcal{L}^n, m) = \{ [f] : f \in \mathbb{L}^1 \},$$

where [f] denotes the equivalence class of f with the L^1 norm

$$|[f]|_{L^1} = \int |f| dm.$$

Similarly, define

$$|f|_{L^p} = \left(\int_{\mathbb{R}^n} |f|^p dm\right)^{1/p}.$$

Define

$$L^p(\mathbb{R}^n) = \{ [f] : f \text{ measurable, } |f|_{L^p} < \infty \}.$$