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0 Vector spaces and linear transformations

0.1 Any linear transformation can be represented by
a matrix

Let V' be a real vector space with basis B = {vy, -+ ,v,}. Then, Vv € V, we
can write

n
v = Z x;v; where x; € R.
i=1
We say x is the coordinates of v. Let T : V' — V be a linear transformation.
Define an n x n matrix A = (a;;) by

n
Tv; = E a;jv; where j =1,--- n.
i=1

Notice that Tv = w <= Ax = y where x gives the coordinates of v and
y gives the coordinates of w.

1 Metric space

1.1 Open and closed sets
Let (X, d) be a metric space and let S C X.

Definition 1.1 (Open set). We say S is an open set if

Vpe S3r>0st B(pr)CS.

Definition 1.2 (Closed set). We say S is closed if its complement in X,
X'\ S is open.

Proposition 1.3 (Closed set). S is closed <= Vp, € S s.t. p, = p € X,
we have p € S.

Definition 1.4 (Limit point). We say p € X is a limit point of S if

Vr>0dx e S\ {p} st zeB(pr).

4



Proposition 1.5 (Closed set). S is closed <= S contains all its limit
points.

1.2 Completeness

Definition 1.6 (Completeness). The metric space (X, d) is complete if every
Cauchy sequence (p,,) in X converges to an element p € X.

1.3 Compactness

1.3.1 Open covers

Definition 1.7 (Compact set). We say K C X is compact if any open cover
of K can be reduced to a finite subcover.

1.3.2 Sequential compactness

Definition 1.8 (Sequential compactness). We say K C X is sequentially
compact if any sequence in K has a subsequence that converges to a point
of K.

In metric spaces compactness and sequential compactness are equivalent.
Theorem 1.9. A set K C (X, d) is compact <= it is sequentially compact.

1.4 Closed and bounded
Proposition 1.10. If K C (X, d) is compact, then K is closed and bounded.

1.4.1 Heine-Borel Theorem

Theorem 1.11 (Heine-Borel Theorem). In (R", |z — y|), any closed and
bounded set is compact. Note: this is not true in a general metric space.



2 Continuous functions on metric spaces

2.1 Continuity
211 e—9
Definition 2.1 (Continuity). f: X — Y is continuous at a € X if

Ve > 030> 0s.t. dlz,p) <d = d(f(z), f(p)) <e.

2.1.2 Sequences

Proposition 2.2 (Sequential continuity). f : X — Y is continuous at
a € X < Vsequence (x,) in X,

T, > a = f(z,) — f(a).

2.1.3 Open sets

Proposition 2.3. f: X — Y is continuous at a € X <= if O is any
open set containing f(a), then the preimage f~!(O) contains B(a, §) for some
6> 0.

2.2 Uniform continuity

Definition 2.4 [Uniform continuity]. f: X — Y is uniformly continuous on
X if

Ve > 030 > 0s.t. d(xg,z) <d = d(f(z1), f(x2)) < € V1,20 € X.
Proposition 2.5. Let (X, d) be compact and suppose f : X — Y is contin-
uous. Then f is uniformly continuous on X.

Remark 2.6. A continuous function on a compact set K C X is uniformly
continuous on X.



2.2.1 Extreme Value Theorem
Proposition 2.7. Let (X, d) be compact and suppose f : X — Y is contin-
uous. Then f(X) is compact.

Corollary 2.8 (Extreme Value Theorem). Let (X, d) be compact and sup-
pose f : X — R is continuous. Then f attains an absolute max and an
absolute min on X.

3 Differentiability

3.1 Definition of derivative
3.1.1 R"—= R

Definition 3.1 (Differentiability). Let f : R" — R. We say f is differen-
tiable at a € R™ if dc € R™ s.t. the function defined by

fla+h) = f(a)+c-h+r(h)

satisfies limy_,o 7 = 0.

r(h) _
Ihl
3.1.2 R"—R™

Definition 3.2 (Differentiability). Let F = (f1,---, fm) : R* — R™. We
say F' is differentiable at a € R™ if 4C' € M,,,«,, s.t. the function defined by

Fla+h)=F(a)+C-h+r(h)

satisfies limy,_,g % =0.

3.1.3 VW

Definition 3.3 (Differentiability). Let f : V' — W where V,W are real
normed vector spaces (possibly infinitely dimensional). We say f is differen-
tiable at @ € V if J a linear transformation 7, : V' — W s.t. the function
defined by

fla+h) = f(a) + To(h) +r(h)

. . h
satisfies limy,_,g % = Ow.



3.2 Criterion for differentiability

Theorem 3.4 Let O C R™ be an open set and suppose f : O — R. Suppose
f € CHO). Then f is differentiable.

3.3 Important tricks

Let f: (a,b) — R be C'. Then for z,z +y € (a,b), we have the following
tricks.

Trick 3.5 (Using FTC).
flo+y) - fa) = ( | 1 ty)dt) ).

Trick 3.6 (Using MVT).

fl@+y) = flx) = fc)y

for some ¢ between x, x + .

3.4 The Chain Rule

Theorem 3.7 (The Chain Rule). Let F' : R® — R™ be differentiable at
r € R". Let G : R™ — R* be differentiable at z = F(z). Then H = G o F :
R™ — R* is differentiable at X and

DH(x) = DG(F(x)) - DF(z),
where
V fi(a)
D(F(a)) = :
V fm(a)

3.5 Clairaut’s Theorem

Theorem 3.8 (Clairaut’s Theorem). Let F': R™ — R™ be C*. Then



3.6 Taylor’s Theorem

We first introduce the multi-index notation.

3.6.1 Multi-index notation
Consider X = (xy,--- ,x,) € R™

Definition 3.9 (Multi-index notation).
1. A multi-index is an n-tuple a = (aq, - - - , a,) where a; € N.
2. Define 2 = x7" - 23 - - - 2. In addition, define 3 = 1 even if z; = 0.
3. The order of v is o] = a1 + - -+ + .

4. Define o! = aqlas! - - a,,!. In addition, define 0! = 1.

Remark 3.10 (Polynomial). Any polynomial p(z) of order < m can be
written as
p(r) = Z cor® where ¢, constant.

lal<m
Definition 3.11. Let
D= (0, ,00,) = (01, ,00n).
Let f:R™ — R and suppose f is C™. We define
D*=0"o0-- 00"

3.6.2 Multinomial Theorem

We first recall the Binomial Theorem.

Theorem 3.12 (Binomial Theorem).

m

m/! -
(1 4+ 29)" = —— "l
jz:; jim =) 7

Theorem 3.13 (Multinomial Theorem).

(14 +a,)" = al‘a.



3.6.3 Taylor’s Theorem

We first recall the single variate Taylor’s Theorem.

Theorem 3.14 (Taylor’s Theorem). Let m € N. Let f : R — R and suppose
f e ™ Let a,x € R. We have

o - f(k)(a) k f(mH)(f) m+1
f(@—% I (x—a)er(l‘—a) ;

where ¢ is strictly between a, z.

Theorem 3.15 (Taylor’s Theorem). Let m € N. Let f : R* — R and
suppose f € C™. Let a,x € R". We have

fy= Y PO gy 3 Py
lo|<m |a|]=m+1

where ¢ is strictly between a, z, i.e., on the open segment joining a and .

4 Inverse and Implicit Function Theorems

4.1 Contraction Mapping Theorem

Consider the metric space (X, d).

Definition 4.1 (Contraction). A map ¢ : X — X is a contraction if 30 <
c<1s.t.

d((x) — d(y)) < cd(z,y) Yo,y € X.

Theorem 4.2 (Contraction Mapping Theorem). Let (X, d) be a nonempty
and complete metric space. Suppose ¢ : X — X is a contraction. Then 3 a
unique = € X s.t. ¢(x) =z and we call x a fixed point.

4.2 Inverse Function Theorem

4.2.1 Between euclidean space

Theorem 4.3 (Inverse Function Theorem). Suppose f : R® — R" is C'! on
R". Let a € R®. We have the following.
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1. If f’(a) € M« is invertible, then Jopen sets U 2 aand V' > f(a) =10
st. f:U — V is a C'-diffeomorphism, i.e., f is one-to-one, onto, and
both f and f~! are C*.

2. Let g= f~1:V — U then g is C! and
g(f(x) =[f' (@) Ve eU

4.2.2 Between normed real vector spaces

Theorem 4.4 (Inverse Function Theorem). Let V' be a finitely dimensional

real normed vector space. Suppose f:V = VisClonV. Let a € V.
Then if f'(a) € L(V,V) is invertible, then 3 open sets U; 3 a and Uy >

fla) =bst. f:U — Uy is a C'-diffeomorphism.

4.2.3 Important usages of the Inverse Function Theorem

TLDR: level sets in R™ can be parametrized using n — 1 parameters.

Example 4.5 (Surface flattening). Let ¢ : R” — R be a C'! function. Let

S ={z € R": ¢(x) = 0}. Suppose a € S, i.e., ¢(a) =0 and V¢(a) # 0.

Without loss of generality, assume ¢, # 0. We want to show 3 open sets
U>a,V>0andaC! function ¢ : U — V s.t.

Y(a)=0and P(SNU)={yeV :y, =0}

Note: intuitively, by change of coordinates from x = (x1,--- ,x,) toy =
(Y1, sYn), the level “surface” S in R} is “flattened” to a “plane” in Ry
where y, = 0.

Proof. Define

Y(z) = (r1 — a1, , Tp_1 — Ap_1, 0(x)).

Note that v is apparently C' and ¢ (a) = 0. In addition, it is easy to verify
that

detw(a) = [0 O =0 (@) 0,

Therefore, 3 open sets U > a,V 3 0s.t. ¢ : U — V is a C'-diffeomorphism.
Lastly, since SNU ={x € U : ¢(z) =0}, p(SNU)={yeV :y,=0}. O

11



Example 4.6 (Surface parametrization). From Example 5.5, we can define
r(t) where t = (t1, -+ ,t,_1) € R P by r(t) = (ty, -+ ,t,-1,0) for t in a
small enough I 3 0. Note: this can also be done using the Implicit Function
Theorem.

4.3 Implicit Function Theorem

Theorem 4.7 (Implicit Function Theorem). Let f : R — R™ be C'. In
addition, we write f(z,y) with z € R",y € R™. Suppose f(a,b) = 0 and
assume D, f(a,b) = A, is invertible. Then

1. 3 open sets U 3 (a,b) in R™™™ and open sets W 3 b in R™ and C"*
function g : W — R" s.t.

{(z,y) €U : f(z,y) =0} ={(9(y),y) :y € W}

Note: the former is a level set of f whereas the latter is the graph
of g on W. Intuitively, a level set of f : R"™™™ — R™ can be locally
represented by a function g : R™ — R™ under certain assumptions.
This is not mathematically rigorous but one can think of this as: once n
parameters are determined, one is only left with m “degrees of freedom”
to parametrize the level set with.

2. If A, = D, f(a,b), then ¢'(b) = —A;'A,.

Remark 4.8 (Special case). Let ¢ € C1(R? R!). Let S = {z € R?: ¢(z) =
0}. Assume V¢(a) # 0. Without loss of generality, assume ¢,,(a) # 0.
Implicit Function Theorem implies that 3 open set U > a = (a3, as, az) in R?
and open set W 3 (a1, az) in R? and a C! function g : W — R s.t.

UNS ={(x1,29,9(x1,22)) : (x1,22) € w}.

4.4 Lagrange multipliers

We consider the case with one constraint.

Proposition 4.9 (Lagrange multiplier). Let f, g € C*(R? R). Let S =
{r € R3: g(x) = 0}. Let a € S and assume Vg(a) # 0. If f|s has a local
maximum at a € S, then 3\ € R s.t.

Vf(a) = Ag(a).

12



5 Riemann integral

5.1 Integration

Let f: R — Rbdd. Let P={Ry, -, Ry} be a partition of R.
Definition 5.1 (Upper and lower sums). The upper sum of f associated

with P is given by
N

U(f,P)=> (sup IV (Ry).

X R;
=1 J
The lower sum of f associated with P is given by

L(f.P) = Y _(inf F)V(Ry).

=1

Definition 5.2 (Upper and lower integrals). The upper integral of f is given
by
I(f) = mE U(f,P).

The lower integral of f is given by

I(f) = sup L(f. P).

all P

Definition 5.3 (Riemann integrable). Let f : R — R bdd. We say f is
Riemann integrable on R if

I(f) = I(f).

Proposition 5.4 (The criterion). Suppose f : R — R bdd. Then

f €Riem(R) <= Ve > 03P st. U(f,P)— L(f,P) <e.

Proposition 5.5. Let f be cts on R, then f € Riem(R).

13



5.2 Jordan content

Notation 5.6 (Characteristic function). Let S C R. Let xs: R — R be

(2) 1 z€8
x) = )
s 0 z€R\S

Definition 5.7 (Upper and lower content). The upper content of S is given
by

cont™(9) = T(xs) = inf {Z(su_p xs)V(R;) }

j=1 R

= inf
P -
J
= inf {
P -
j

The lower content of S is given by

WE

V(RJ)RJEP,RJQS#(a}

1

WE

V(Rj)ZRjEP,SgRlLJ"'URN}.
1

cont_(S) = I(xs) = Sl;p {Z(lgf XS)V(R]‘)}

j=1 7

N
:Sl’,l)p{ZV(RJ)RJEP,RluURNQS}
j=1

Definition 5.8 (Jordan content). We say S has content if

cont™ (S) = cont_(S) <= xs € Riem(R).

Definition 5.9 (Closure). S is the smallest closed set containing S <=

S={peX:3x, €S with z, — p}.

Definition 5.10 (Interior). S is the largest open set contained in S <=

S={zxeS:30>0st. B(zx,0) CS}.

14



Definition 5.11 (Boundary).

bS =5\ S ={pe X :V5>0,B(p,d) meets both 5, 5}

Proposition 5.12.

S C R has content <= cont™(bS) =0 <= cont_(bS) = 0.

Definition 5.13. If S C R and cont™(S) = 0, we say S is nil.

Proposition 5.14 (Continuous except on a nil set). Let f : R — R bdd. Let
S ={x €R: fis discontinuous at z}. If cont(S) = 0, then f € Riem(R).

Definition 5.15 (Integration on sets with content). Let K" C R be closed
and with content, i.e., bK is nil. Let f: K — R cts. Let

x flx) zeK
0 reER\K

By Proposition 1.14, define

/;de::/Lde

Definition 5.16 (Riemann sums). Let f: R — R bdd.

5.3 Riemann sums

a) Let P be a partition of R. Pick z; € R;. The Riemann sum

R(f,P)= Y fla))V(R;).

R;€P

b) Let L € R. We say
lim R(f,P)=L

|P|—0

if Ve > 030 > 0 s.t. for any |P| < d, we have |R(f,P) — L| < e.

15



c¢) We say f is Riemann integrable (in the new sense) it 3L € R s.t.
lim R(f,P) =

|P|—0

Proposition 5.17.

f € Riem(R) and / f=L < f € Riemy(R) and ‘7171|m R(f,P)= L.
R —0

5.4 Fubini’s Theorem

Proposition 5.18 (Modulus of continuity). Let (X, d) be a metric space.
Then, f: X — R is uniformly cts <= 3 monotonic function w : [0,1) —
[0,00) s.t. if § N\, O then w(d) N\, 0 and s.t. if d(z,y) < § < 1, then

|[f(z) = f(y)] < w(9).

Theorem 5.19 (Fubini’s Theorem). Let 3 C R”™! closed and bounded, has
content, i.e., cont(bX) = 0. Let go,¢q1 : ¥ — R cts. Assume go < ¢; on X.
Let Q = {(z,y) e R", x € ¥, go(x) <y < g1(z)}. Then,

a) €2 has content.

b) If f: Q — R cts, then

91(x)
o(x) = / Gy

is cts on 2.

/de /gb anl_//gO Fx,y)dydV,_,.

5.5 Change of Variable Theorem

Theorem 5.20 (Change of Variable). Let O,, €, be open in R™. Suppose
G: 0O — Qis a C! diffeomorphism. Let f: Q — R be continuously compact
supported in €, i.e., f € Co(2,R). Then

/f )dV (y /f )| det G/ (z)]dV (x).

c)



6 Surfaces and surface integrals

6.1 Surfaces

Definition 6.1 (C* m—dimensional surface in R"). Suppose m < n. A set
M C R"is a C* m—dimensional surface in R” if: given any p € M 3 open set
U in M with U 3 p, open set © C R™ and C* map ¢ : O — R” which maps
bijectively to U with ¢'(z) : R™ — R" injective Vo € O, and ¢~ : U — O
cts.

We call ¢ : O — U a coordinate chart and U a coordinate patch on M.

Definition 6.2 (Tanget spaces). Let M C R" be a C* m—dimensional
surface. Let ¢ : O — R™ be a chart. Say ¢(z¢) = p. Recall ¢/(z¢) : R™ — R”

injective. Define

T,M = Range of ¢'(zo) : R™ — R™.

6.2 Surface integrals

Definition 6.3 (Metric tensor). Let O C R™ open with m < n. Let
¢ : O — R" be a C! chart on surface M C R".

a) Define
G(x) = ¢/(2)" ¢'(2) = (Gji()))fher

to be the metric tensor of surface M on U = ¢(O).

b) Define g(z) = det G(z).

Definition 6.4 (Surface integral). Suppose f : M — R cts, supp f C U =
»(O) cpct. Define

/M fds = /O £ 0 6(2)\/g(@)dV (z).
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6.3 Jordan content on surfaces

Definition 6.5 (Riemg(M)).

a) Suppose [ : U — R bdd with supp f C U cpct. Then say f € Rieme(U)
if f o ¢ € Riem¢(O). If this is so, define

| 1as = [ (oo

b) Let f: M — R bdd with compact support. We say f € Riemo(M) if 3
a finite cover of supp f by coordinate patches ¢; : O; — U; and partition
of unity {p;} subordinate to {U;} s.t. fp; € Riemq(U;). Define

/M fdS = i:; /U | FpidS.

Peﬁnition 6.6 (m—dimensional Jordan surface content). Let ¥ C M where
Y is cpct. We say Y has m—dimensional Jordan surface content if yy €
Riem¢ (M), in which case, define the m—dimensional Jordan surface content

A, (%) = /M sdS.

Proposition 6.7 Let f : M — R bdd with compact support on M. Let
Y ={x € M : fis discontinuous at x}. If A,,(X) =0, then f € Riems(M).

6.4 Maps between surfaces
Let M,,, N; be C! surfaces in R™. Let f: M — N. We give two equivalent
definitions of C' maps from M to N.

Definition 6.8 (Using extensions). We say f is ?’1 if Vp € M 4 open set
U>pinR"s.t. f|lynv extends to a C! function f: U — R™.

Definition 6.9 (Using charts). Let ¢ : O - U C M, :Q — V C N be C!

charts. Define F =4 1o fo¢: 0 — Q. Wesay fisCHif F: O — Qis C!
for any such pair of charts.

18



Let f be C*. We want to define f'(p) : T,M — Ty, N s.t. f'(p) agrees
with the old definition and follows the Chain Rule. We give two definitions
below.

Definition 6.10 (Using extensions). Let f be a C' extension of f to an
open set U 3 p in R". We define

f'®) = F'®)l,ur-

Definition 6.11 (Using charts). Define h = 1)"! o f 0 ¢ as in Definition 2.9.
Suppose ¢(xg) =p € M,¥(yo) = f(p) € N,yo = h(xo). We define

f'(p) =¥ (yo) o I (x0) o (¢'(x0)) "

7 Multilinear forms on vector spaces

7.1 Multilinear forms

Definition 7.1 (Multilinear k—forms). A multilinear k—form on V is a
function a : V¥ — R that is linear in each argument when the others are
held fixed.

Write T%(V) for the vector space of all multilinear k—forms on V.

Definition 7.2 (Tensor product). If a € 7?(V) and g € T9(V), we define
the tensor product a ® g € TP4(V) by

a® B(v,w) =a)p(w) forve VP we Vi,

Definition 7.3 (Pullbacks). Let A: V — W be a linear transformation and
suppose 3 € T*(W). THen, we define A*3 € T*(V) by

A*B(v) = B(Av).

Definition 7.4 (Basis and dual basis). Let B = {vy,--- ,v,} be a basis of
V. Let w; € TH(V) be the linear functional satisfying

a1 d=i

Then, B’ = {wy, -+ ,w,} is a basis of T*(V).
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7.2 Alternating mutilinear forms

Definition 7.5 (Alternating multilinear k—forms). A multilinear k—form
« is alternating if the sign of « is reversed whenever two arguments are
transposed.

We denote by A¥(V) C T#(V) the subspace of alternating multilinear
k—forms.

Definition 7.6 (Wedge product). For a € AP(V) and 5 € A%(V), we define
the wedge product a A 5 € APT4(V') by

aAp=Alt(a® pB).

Proposition 7.7 (Basis of A¥(V))

a) Let Z denote the set of all k-tuples I = (i1, - ,ix), where each i, €
{1,---,n}.

b) Suppose dimV =n and let B’ = {w; : i =1,--- ,n} be a basis of T*(V).
For I = (i1, -+ ,ix) € Iy, we set

Wi, = Wi [ ®wik c Tk(V)
c) Let wr = Altwr g = wi, A--- Aw;, € AR(V).

d) If & < n, let Zy » C I denote the subset of k-tuples I satisfying i; <

Suppose dim V = n. Let k < n. A basis of A*(V) is given by

{wI -1 e Ik7/x}

7.3 Determinant

Definition 7.8 (Determinant). Let {e; : ¢ = 1,--- ,n} be the standard
basis of R". We denote by det the unique element of A”(R™) such that
det(e, -+ ,e,) = 1. Let B' = {w; : i = 1,--- ,n} be the dual basis of the
standard basis of R". Then

det =wi A -+ A w,.
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Proposition 7.9 (Classical formula for determinant). Let a; € R". Write
aj = (a1j7 s ,Clnj). Then,

det(al, S ,an) = Z (—1)0a10(1) © Qpo(n)-

G'GSn

Definition 7.10 (Determinant of a linear transformation). Suppose dim V' =
n, B ={vy, -+ ,v,} is a basis of V, and B’ = {wy, -+ ,w,} is the dual basis
of AY(V). Suppose T': V — V is a linear transformation. Then

T (wi A Awp) = (det T)wy A=+ A wy,.

7.4 Orientation of a vector space

We define equivalence relation on A*(V)\ {0} by declaring a ~ 3 when « is
a positive scalar multiple of 3. If v € A*(V) \ {0} is a given fixed element,
we write

A(V)N {0} = AL (V) UAR(V),

where A% (V) consists of all 8 such that 8 ~ v and A* (V) consists of all 3
st. B~ —y.

Definition 7.11 (By choice of w). Each of the equivalence classes A (V), A* (V)
is said to be an orientation of V. Any element w € A% (V) is said to determine
the positive orientation.

Proposition 7.12 (By choice of ordered basis). Let B = {vy,--- , v} be an
ordered basis of V. We say B fixes the same orientation as w if

w(vy, -+ ,vg) > 0.

21



8 Differential forms

8.1 Forms

Definition 8.1 (Alternating k—form on a surface). An alternating k—form
on surface M is a function w s.t. for p € M we have

w(p) € Ak(TpM),

ie.,
w: M — | ) ANT,M).

peEM

Definition 8.2 (Differential forms on a surface). If w is smooth, then we
say w is a differential k—form on M. We write w € A*(M). If k = 0, define
A(M) = C>®(M,R).

Proposition 8.3 (Properties of differential forms).
a) If wi,wy € A¥(M), then w; + wy, € A¥(M) given by
(w1 + w2)(p) = wi(p) + wa(p)-
b) If ¢ € R, then cw; € A*(M) given by
(cwn)(p) = cwn(p).
c) Let we AP(M),0 € A1(M). Define w A § € APT4(M) given by

(wA0)(p) =w(p) A(p).
If w e A%(M), define w A 0 = wh € A1(M) where

(wB)(p) = w(p)d(p).

Definition 8.4 (Pullbacks). Let M, N be smooth surfaces in R"™. Suppose
f+M—=NisC®peM,f(p) €N, f(p): T,M — Ty N. Let w € A*(N).
Define f*w € A*(M) by

fllp)yw(f(p) k=1

(f)e) = {w Of o
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Proposition 8.5 (Properties of pullbacks). Let f : M — N,h: P — M,
then foh: P — N.

a) ff(wr +w2) = ffwr + fFfw..
b) ff(wAf) = fwA f*6.
c) (foh)*w=h*f*w where w € A*(M).

8.2 Differentials

Definition 8.6 (Differentials). Let w C R"™ open and zy € O. Suppose
feC=(O,R)=A0). Since

f:0—=R,

we have
f/(370) 1,0 — Tf(xo)R =R.

Hence, f'(zg) € AY(T,,O) Vzo € O. We write
f'(@o) = df (o), f* = df.
Notice the differential 1—form on O df € A*(O). Call it the differential of f.

Proposition 8.7. Let zp € O, v € T,,0 = R",

df (zo)v = f'(z0)v = V f(z0) - v.
In particular, dz; € A'(O). We saw

dzi(xo)e; = V;(xg) - ej = d;5.

Hence, {dzi(x), - ,dr,(10)} is a basis of AY(T,,O) dual to {e1, - ,e,}.
So,

f(a0) = 3 5 ).

Definition 8.8 (Smooth forms on O). Let w € A*(O), then w(zy) €
A¥(T,,0). We can write

w= Zaldxj = Za;dmil A~ ANdxg, € A¥(O).
1 7
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We say w is smooth and write w € A*(O) when a; are smooth (C*).

Definition 8.9 (Forms on surfaces). Let f € A°(M) = C*°(M,R). Define
df € AY(M) s.t. for p e M,

df (p) = f'(p) € A/ (T,M).

Definition 8.10 (Smooth forms on surfaces). We say w is smooth, w €
A¥(M) when a; are smooth for

w = Za;dasl = Zalda:il A Ndx;, € A’“(M)

Proposition 8.11. Let M, N be smooth surfaces in R". Let F' : M —
N,F € C*M,N),h: N =R h e C>®N,R). Hence, ho F': M — R. For
dh € A'(N), we have

F*(dh) = d(F*h).

Remark 8.12 (Dual role of z;). Proposition 4.11 implies that for coordinate

chart ¢ : O — U, where ¢(xy) = p, we have

Here, the first occurence of x; : O — R is the coordinate function on O; the
last occurence of x; : M — R is the coordinate function on M.

Proposition 8.13. Let ¢ : O, = U C M and ¢ : Q, — U be smooth charts,
and define F : O — Q by F =19 to¢. Let w=ady, A---dy, € A™(U).

a) Y'w= (ao)dyy A+ A dyp.

)
b) ¢*w = (a0 ¢)det F'dxy A -+ Aday,.
c) F*o*w = ¢*w
d)

W= (¢_1)*¢*w = adet(F' o ¢_1)dg;1 A Adey,

and
w= ) Yw=ady A A dyp.
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8.3 Orientation of a surface

Definition 8.14 (Orientation of M,,). Let M,, be smooth. We say M,, is
orientable if 3 a nowhere vanishing element w € A™(M,,), i.e., w(p) # 0 Vp €
M.

Definition 8.15 (Local orientation using charts). Not all surfaces are ori-
entable, e.g., Mobius strip. But we can always orient a coordinate patch
U C M,,. Take O to be oriented by dz; A --- A dz,,, where z; € C>°(O,R).
Then, we can take

(o) dxy A+ Aday = dxy A+ Aday,

to be the orientation of U where z; € C*(U,R).

8.4 Integration of forms

Definition 8.16 (Integration of forms on O). Take M,, = O, C R™ open.
Then, dxy A --- A dz,, where z; € C®°(O,R) orients O. Let w € A™(O)
have compact support in O. Then, we can write w = adx; A - - - A dx,, where
a € C¥(O,R). We define

/Mm:Ow:/O‘l(x)dV(x).

Definition 8.17 (Integration of forms on M,, with compact support on U).
Let M, be an oriented smooth surface. Choose ¢ : Q, — U s.t. dy; A+ - -Adyp,
gives the prescribed orientation. We can write w = ady; A - - - A dy,,, where

y; € C=(U,R). We define
e L
M Q,
= / (aov)dys A -+ A dy,, where y; € C(O,R)
Qy

- / a(())dV (y).

Definition 8.18 (Integration of forms on M,, with compact support on M,,).
Let w € A% (M,,). Choose charts ¢; : O; — U; s.t.
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a) ¢; gives the prescribed orientation on M.
b) supp w C s, Us.
Next, choose a partition of unity {p;} subordinate to {U;} on supp w. We

define
k

[oE

9 Generalized Stokes Theorem

9.1 Generalized Stokes Theorem

Theorem 9.1 (Generalized Stokes Theorem). Let M be an oriented m—dimensional
surface with boundary. Let ¢ : OM — M be the inclusion map. Let
w e A™Y(M). Give OM the induced orientation. Then,

/ dw:/ w.
My, (OM)m—1

Theorem 9.2 (Green’s Theorem). Let 2 be a bounded, connected open
subset of R? with a smooth boundary 99 oriented positively. Let f,g €
C>(R?,R). Then,

/Q(gx — fy)dzdy = fdx + gdy.

o

Remark 9.3. Let w = fdr + gdy € AY(Q). Then

dw = (g, — fo)dz A dy € A*(2).

Theorem 9.4 (Stokes Theorem). Let S be a smooth compact oriented
2—dimensional surface with boundary in R3. Let F' = (fy, fo, f3) € C>®(R3 R3).
Give 0S the induced orientation, and let n be the unit normal vector to S
determined by the given orientation of S. Then,

/(CurlF -n)dS = fidxry + fodzs + f3dxs.
S s
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Remark 9.5. Let w = fidr) + fodwy + fsdrz € A'(R3). Then
dw = gldl'g N diEg + ggdl’g N Cl$1 + ggdl'l VAN dil?g,
where (917 g2, 93) - Curl(fla f27 f3)

Theorem 9.6 (Divergence Theorem). Let W be a bounded connected
open set in R? with smooth boundary W and suppose F = (fi, f2, f3) €
C>(R3,R?). Then,

/ didewdydz:/ F - ndS.
W oW

Remark 9.7. Let w = fidxy A dxs + fodxs A dry + fadry A dry € A2(R3).
Then
dw = divEdxy A dxoy A dxs.

9.2 Closed and exact forms

Definition 9.8 (Closed and exact forms). A differential k—form w on M is
closed if dw = 0 and exact if w = df for some § € A1 (M).

Proposition 9.9. Every exact form is closed.

Proposition 9.10. Let M be an m—dimensional simply connected smooth
surface and w € A'(M). If w is closed, then w is also exact.

Proposition 9.11. Let M and N be compact oriented smooth surfaces of
dimension m, and suppose M = OW where W is a compact oriented smooth
surface of dimension m + 1. Suppose f : M — N is a smooth map which
extends smoothly to all of W. Then for every w € A™(N), we have

/Mf*w:().
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9.3 Brouwer Fixed Point Theorem

Definition 9.12. Let W be a smooth surface with boundary OW. A retrac-
tion of W onto its boundary is a map ¢ : W — OW, no necessarily smooth,
such that

¢(p) = p Vp € OW.

Theorem 9.13 (No Retraction Theorem). Let W be a compact smooth
oriented (m + 1)—dimensional surface with nonempty boundary OW. There
is no smooth retraction.

Theorem 9.14 (Brouwer Fixed Point Theorem). Let B = {x € R™ : |z] <
1}. Suppose F': B — B smooth. Then 3x € B s.t. F(z) = x.

Definition 9.15 (Volume form). Let M be an oriented smooth m—dimensional
surface and suppose ¢ : O, — U C M is any orientation-preserving chart on
M. We define wy; on M by setting

wulv =Vgootdry A--- Ndwy,

for any such chart, where g = det G, G(x) = ¢'(x)'¢'(z).

Remark 9.16. The volume form has property

/MwM:/MdS:vol(M).

10 ODE Theory

We study the general n x n first-order initial value problem (IVP)

% = F(t,y), y(to) = yo. IVP)

Theorem 10.1 (Local existence). Consider the IVP. Let y, € 2, an open
subset of R™. Let I C R be an open interval containing t.

1. Suppose F': I x 2 — R" is continuous.
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2. Suppose 4L > 0 s.t.

[F'(t,y1) — F(t,y2)| < Llyn — yo| VE € I, y; € Q.
Then IVP has a C! solution on some open interval containing .

Theorem 10.2 (Uniqueness). Consider the IVP. Let I C R be an open
interval.

1. Suppose F': I x 2 — R" is continuous.

2. Suppose 4L > 0 s.t.

\F(t,y1) — F(t,y2)| < Ly —yo| VE € 1, y; € Q.

Let I’ C I be an open subinterval containing ¢, on which two solutions y
and z are given. Then y = z on I'.

Proposition 10.3 (Uniform local existence). Consider the IVP.
1. Suppose for each compact K C €2, there exists Mg < oo s.t.

|F(t,z)| < Mg Vz e K,tel.

2. Suppose for each such K, AL < oo s.t.

|F(t,z) — F(t,y)| < Lg|r —y| Yo,y € Kt € I.

Let K C € compact. Then there exists 7' > 0 s.t. for each t; € I and
yo € K, a unique solution to IVP exists on [tg — T,to + T]. We call T a
uniform time of existence for I x K.

Remark 10.4. If F' € C'(R x R"), then F satisfies uniform local existennce
when [ is any bounded open interval and € is any bounded, conver open set

in R".

Proposition 10.5 (Criterion for global existence). Consider the IVP where
F satisfies uniform local existence.
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Suppose that if J C [ is any bounded open subinterval containing t,
on which a C! solution y exists, there exists a compact set K C Q s.t.
y(t) € K Vt € J. Then y extends uniquely to a C* solution on I.

Proposition 10.6 (Linear energy estimate). Consider a C' solution to the

IVP

j—g — A(t)y + B(®). 4(0) = o

on an interval I 5 0 where A € C'(I, M(n,R)) and B € C(I,R"). If ||A(¢)|] <
K Vt € I, then y(t) satisfies Vt € I,t > 0:

t
’y(t)’Q §6(2K+1)t‘y0’2+/ 6(2K+1)(tfs)|B(8)‘2d8.
0

The same formula holds for ¢t € I,¢ < 0, but with B(s) replaced by B(—s)
and t replaced by |t| on the right.

[Uniqueness] Consequently, if y; and yo are C' solutions on I, we must
have y; = ys.

11 Compactness in function spaces

Remark 11.1. In any finite dimensional normed vector space, a set K is
compact <= K is closed and bounded (Heine-Borel). In any metric spacel
K compact = K closed and bounded. However, in most function spaces,
the converse of the last statement fails.

Example 11.2. Consider the metric space C([0,1],R) with the metric as-
sociated with the sup norm, i.e., d(f,g) = supyg ;| f(z) — g(z)|. The set

{z":n=1,2,---} C B(0,1) C C([0,1],R).

Observe that {z"} is closed (by construction), bounded (by the unit ball),
but not compact in C([0, 1], R).

For the sake of contradiction, suppose compactness. Then, notice that
any subsequence of (z™) that converges in the above metric, must converge
uniformly to a continuous function. But we know x™ — f point-wise and f
is not continuous.
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Definition 11.3 (Equicontinuity). Let (X,d) be a compact metric space.
Let F be a family of functions f : X — R. We say F is equicontinuous if
given any € > 0 36 = d(e) > 0s.t. if d(p,q) < d then |f(p)—f(q)| < eVf € F.

Definition 11.4 (Density). We say A is dense in (X, d) if Ve > 0 and p € X,
da € A s.t. d(a,p) < e

Proposition 11.5. (X, d) is a compact metric space = X has a countable
dense subset.

Theorem 11.6 (Arzela-Ascoli Theorem). Let (X, d) be a compact metric
space. Consider C'(X,R) with its usual sup norm, i.e.,

|f| = sup |f(z)|.
zeX

Let a family of functions K C C'(X,R) be closed, bounded, and equicontin-
uous. Then K is compact.

12 Density and approximation in function spaces

12.1 Approximate identity

Proposition 12.1 (Differentiation under the integral sign). Let Q C R?
open. Let R ={(z,t) :a <z <bec<t<d} CQ Let f e CYQ,R). For
x € (a,b) let

o) = | ety
Then, cd

o) = [ fulo vy
and ¢ is C' on (a, b).

Definition 12.2 (Convolutions). Let f € C(R",R) and g € C.(R",R).
Define

(f*g)x)= | flx—y)gly)dy= | [f(y)glx—y)dy.

Rn R
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Proposition 12.3.

a) Let f € C(R",R),g € C*(R™,R). Then f x g € C*¥(R",R) and if |a| < k,
0°(f xg) = [+ (0%).

b) Let f € C*(R™,R),g € C.(R",R). Then fxg € C*(R",R) and if |a| < k,
0%(fxg)=(0°f)*g.

Definition 12.4 (Approximate identities). Fix g € C*(R™",R) s.t. g > 0,
suppg C B(0,1), and [, g(z)dz = 1. Define

gr(x) = k'g(kz), k=1,2,---

So, gr > 0, suppgr C B(0,7), and [5. gi(z)dz = 1 Vk. We call (g;) an
approximate identity.

Proposition 12.5. Let m > 0. Let f € C™(R™,R). Set

fr(x) = (f * i) (x) € C™.
For any compact K C R" and |a| < m, we have 0% f;, — 0“f uniformly on

K. In particular, fy — f as f — oo.

12.2 Frechet (metric) topology

Definition 12.6. Let Q C R” open. Write Q = |JiZ, K as the union of an
increasing sequence of compact subsets. For example,

1
K; = {z € Q:dist(z,bQ) > =} N B(0, j).
J
For each j define a seminorm on C’k(Q, R) by

pi(f) = sup [0°f(x)|.

zeK; |a|<k
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Finally, for f, g € C*(Q2,R), define

(.9 = > P s f‘g - ?9).

Remark 12.7.

a) d is a metric.

b) Let (f,) be a sequence in C*(Q,R) and f € C*(2,R). Then f, — f in
the metric space C*(Q,R) if and only if given any compact set K C
and multi-index o with |a| < k, the sequence 0* f,, — 0“f uniformly on
K.

c) C*(Q,R) with the metric d is a complete metric space.

12.3 Stone-Weierstrass Theorem

Theorem 12.8 (Weierstrass Approximation Theorem). Let f € C([a, b],R).
Then, 3 polynomials p,, s.t. p, — f uniformly on [a,b] as n — oo, i.e., the
set of all polynomials on [a, b] is dense in C([a, b], R).

Definition 12.9 (Algebra). An algebra of real-valued functions on a set X
is a set of functions that is closed under (1) addition, (2) multiplication, and
(3) scalar multiplication by R.

Theorem 12.10 (Stone-Weierstrass Theorem). Let X be a compact metric
space. Let A C C(X,R) be a sub-algebra. Suppose 1 € A and A separates
points, i.e., if p,q € X,p # ¢, then 3h,, € A s.t. hy,(p) # hye(q). Then, the
closure of A in the sup norm, A = C(X,R).

Definition 12.11 (Self-adjoint). An algebra of function f : X — C where
X is a compact metric space is said to be self-adjoint if f € A — f € A.

Theorem 12.12 (Stone-Weierstrass Theorem (complex version)). Let (X, d)

be a compact metric space. Let A C C(X,C) be a L self-adjoint sub-algebra.
Suppose 1 € A and A separates points in X, then A = C'(X,C).
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Definition 12.13 (Trignometric polynomials). Define the set of all trigno-
metric polynomials to be the set {Z\k\gN are® N =0,1,2,--- ,a;, € C}.

Example 12.14 (Fourier series). Let the set of periodic functions
Cp([0,27,],C) = {f € C([0,2x],C), f(0) = f(2m)}.

Then the set of all trignometric polynomials is dense in C,([0, 27], C).

13 Lebesgue measure and integration

13.1 o—algebra

Definition 13.1 (c—algebra). Let X be a nonempty set. We say A C P(X)
(the power set) is o—alebra on X if

1. if By, E,,--- € A, then U;’il E; € A and
2. if Fe A, then F°= X\ E € A

Remark 13.2 If Ey, Ey, - -+ € A, then ()2, E; € A. (Proof using De Mor-
gan’s laws.)

Corollary 13.3. If £ C P(X). Then there is a unique smallest c—algebra
that contains &£, o(€). Call it the o—algebra generated by £, where

(&) = ﬂ{a — algebra that contain £}.

Definition 13.4 (Borel o—algebra)

B(R") = o({open sets in R"})
13.2 Measure
Let X be a nonempty set. Let M be a c—algebra on X.

Definition 13.5 (Measure). A measure p on (X, M) is a function p : M —
0, 00] s.t.
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1. u(@) =0, and

2. [Countable additivity] if £; € M, j =1,2,--- disjoint, then
1 (U Ej) = ().
j=1 j=1

We call (X, M, i) a measure space.

Proposition 13.6 (Properties of measures).

1. Let E,F € M. Then EC F = u(E) < u(F).
2. [Subadditivity] Let Ey, Es, - - € M not necessarily disjoint, then

p ( Ej) <D nlEy).

3. [Continuity from below| Let Ey C Ey C --- where E; € M. Then
i <U1 Ej) = lim u(E;).
]:

13.3 Lebesgue measure

Definition 13.7 (Outer measure). An outer measure on set X is a function
p e P(X) — [0, 00] s.t.

L p*(0)=0.
2. AC B = p*(A) < u*(B).
3. 4, e P(X) =
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Definition 13.8 (Lebesgue outer measure on R").
Let £ = {bounded open intervals in R”}. An open interval I € £ has the
form
I={zeR":a; <x; <b;a;,b € R"}.

Let A : & — [0, 00] be defined by the usual volume, i.e.,
M) =T = ay).
j=1
If S € R", we define the Lebesgue outer measure
j=1 =1
Theorem 13.9. The restriction of m* to B(R") is a measure on B(R"). So,
(R™, B(R™), m*) is a measure space.

Definition 13.10 (Lebesgue measureable sets). Define the set of Lebesgue
measurable sets

L'={EUF:FEeBR"),F CN for some N € B(R") s.t. m*(N) =0.}
Theorem 13.11. The Lebesgue outer measure restricted to the set of
Lebesgue measurable sets is a measure, i.e.,

m*|z, =m
is the Lebesgue measure on R™. So, (R™, L™, m) is a measure space.

13.4 Lebesgue integration

Definition 13.12 (Lebesgue measurable functions). Let f : (R", L") —
(R, B(R)). We say f is Lebesgue measurable if f~1(B) € £L" VB € B(R).

Remark 13.13.
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1. Tt is enough to check f~'((a,b)) € L" ¥(a,b).
2. f,g measurable = f + g, fg measurable.

3. Limit of a sequence of measurable functions is measurable. Consider
fi»7 = 1,2,---. Then sup; f;,inf; f;,limsup,_, . f;,liminf; . f; are
measurable.

Example 13.14. Let A € £". The characteristic function

_J1 ze€A
M0 r¢ A

is measurable. To see this, notice that x,'((a,b)) = A or A° or R™ or (),
which are all measurable.

Definition 13.15 (Simple functions).

a) Consider (R", £™ m). A simple function is any ¢ : R” — R of the form

¢ = cixa,
j=1

where ¢; e R, A; € L.
b) Let ST(R", L", m) = {¢ simple, ¢ > 0}.
c) Let ¢ € ST. Define

m

ddm = Z c;m(A;).

Theorem 13.16. Let f : (R,£") — R be measurable, f > 0. Then, 3
simple functions ¢,,n =1,2,--- s.t. 0 < ¢, " f point-wise on R".

Proposition 13.17. Suppose ¢,¢ € ST, ¢ > 0.

/ncgbdm:c/nqbdm.
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b) [(p+v)=[¢+ [
) p<v = [o< [
d) Fix ¢. If

- /A sim= [ o

where A € £", then p is a measure on £".

Definition 13.18 (Lebesgue integral). Let
fel?={f:R" =R, f measurable, f > 0}.
Define
/ fdm:sup{/ odm : 0 < ¢ < f, ¢ simple }

Definition 13.19 (Lebesgue integrable functions IL'). Suppose f : R" —
R measurable but not necessarily > 0 Vz. Write f = f* — f~ and f*
measurable.

a) Define
fdm = / frdm — f dm.
Rn n

b) If both [, ffdm < oo, say f is integrable and write

f e L\R™, £", m).

Remark 13.20.

a) f integrable <= [ |f|dm < oc.

b) Let A € L™, f € L'. Define

/ fdm = fxadm.
A R™
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13.5 Convergence Theorems

Theorem 13.21 (Monotone Convergence Theorem). Let f, € L7 be a
sequence of non-negative measurable functions. Suppose f,, monotonically
increasing, i.e., f, < fu,41 Vn and suppose f(z) = lim, o fn(z) point-wise.
Then,

lim [ f,dm = / (lim f,)dm = / fdm.

n—o0

Theorem 13.22 (Dominated Convergence Theorem). Let f,, € L!. Suppose
fn — f point-wise in R". (Hence, f is measurable.) Suppose Jg € L! s.t.
|fn| < g ¥n. Then, f € L! and

lim fndm:/fdm.

n—oo

Proposition 13.23. Suppose f, € £7}. Then, it follows immediately from

MCT that
J{Es)on- o

=1

Proposition 13.24. Let ¢ € ST(R™, L™, m) be a non-negative simple func-
tion. Then, A — [, ¢dm is a measure on L™.

Proposition 13.25 (Sets of measure 0 is negligible in Lebesgue integration
theory). Let N € L™, m(N) =0, i.e., Ve > 0, N can be covered by intervals

Ij s.t.
Zm(]j) < e.
j=1

Let f: R® — R be a measurable function. Then,

/Nyf|dm: 0.

Corollary 13.26. Suppose f,g : R® — R are in ' and are hence measur-
able. Suppose f = g except on N (say f = g almost everywhere), where
N € L£" has m(N) = 0. Then,

Rnf—gz/Nf—g=0=> /fz/g-
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Remark 13.27. Recall

L'(R™, L™, m) = {Lebesgue measurable functions f s.t. /]f| < oo} .

Notice that | - | is not a norm since we can have [ |f| =0 where f # 0.

Definition 13.28. Given f,g € L', say f ~ ¢ <= f = ¢ almost
everywhere. Define

LR, £"m) = {[f]: f e L'},

where [f] denotes the equivalence class of f with the L' norm

Al = / Fldm.

1/p
|f|Lp=( |f|”dm) .
Rn

LP(R™) ={[f] : f measurable, |f|r» < co}.

Similarly, define

Define
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