MATH 653 Review

Kaibo Tang

December 5, 2024

Contents

1	Natural numbers, integers, rationals														
2	Rea	l numbers	5												
3	Metric spaces														
	3.1	Open and closed sets	5												
	3.2	Completeness	6												
	3.3	Compactness	6												
	3.4	Connectedness	7												
	3.5	Contraction mapping theorem	8												
	3.6	Tricks and examples	8												
4	Con	tinuous function on metric spaces	9												
	4.1	Continuity	9												
	4.2	Extreme value theorem	10												
	4.3	Intermediate value theorem	10												
	4.4	Sequences of functions	10												
	4.5	Tricks and examples	11												
5	Differentiability 1														
	5.1	Differentiability	13												
	5.2	Chain rule	13												
	5.3	Clairaut's theorem	13												
	5.4	Tricks and examples	14												

6	Taylor's theorem	14												
	6.1 Multi-index notation	14												
	6.2 Multinomial theorem	15												
	6.3 Taylor's theorem	15												
7	Limit superior and limit inferior													
8	Contraction mapping theorem	16												
9	Inverse and implicit function theorems	16												
	9.1 Inverse function theorem	16												
	9.2 Implicit Function Theorem	17												
	9.3 Lagrange multipliers	17												
10	Partition of unity	17												
11	Basics of measure theory	18												
	11.1 σ -algebra	18												
	11.2 Measure	18												
	11.3 Lebesgue measure	20												
	11.4 Complete measure space	21												
12	The Lebesgue integral	21												
	12.1 Lebesgue integration	21												
	12.2 Convergence theorems	23												
	12.3 L^p spaces	24												
	12.4 Tonelli's and Fubini's theorems	25												
	12.5 Change of variable theorem	26												
13	Normed vector spaces	26												
14	Compactness in function spaces	27												
15	Density and approximation in function spaces	28												
	15.1 Approximate identities	29												
	15.2 Approximation theorems	29												
16	Existence and uniqueness for systems of ODEs	30												

17 Introduction to Complex Analysis														32					
	17.1	Complex numbers																	32
	17.2	Functions on $\mathbb C$.	•																32

1 Natural numbers, integers, rationals

Definition 1.1 (Natural numbers). We define zero and the natural numbers using sets by taking

$$0 := \emptyset, 1 := \{\emptyset\}, 2 := \{\emptyset, \{\emptyset\}\}, etc.$$
(1)

Equivalently, we can rewrite the definition as follows:

$$0 := \emptyset, 1 := \{0\}, 2 := \{0, 1\}, etc.$$
(2)

Remark 1.2. Let $\mathbb{N}_0 = \{0, 1, 2, \dots\}$. We can define $m \leq n$ to mean $m \subset n$.

Remark 1.3 (Addition). Addition of elements $m, n \in \mathbb{N}_0$ can be defined as follows:

- 1. Taking the disjoint union $m \cup n$.
- 2. Search \mathbb{N}_0 for the unique set that can be put into one-to-one correspondence with $m \cup n$.

Remark 1.4 (Multiplication). *Multiplication is defined by repeated addition*.

Definition 1.5 (Integers). First, we say two ordered pairs of elements of \mathbb{N}_0 , (m, n), (m', n') are equivalent if

$$m+n'=n+m', (3)$$

in which case we write $(m,n) \sim (m',n')$. We define the equivalence class of (m,n), denoted as [(m,n)], to be the set of all ordered pairs equivalent to (m,n). Then, we can define the integer "m - n" as [(m,n)].

Definition 1.6 (Rationals). Assuming $q \neq 0, q' \neq 0$, we say to ordered pairs of elements of \mathbb{N}_0 , (p,q), (p',q') are equivalent if

$$pq' = p'q,\tag{4}$$

in which case we write $(p,q) \sim (p',q')$. We define the equivalence class of (p,q), denoted as [(p,q)], to be the set of all ordered pairs equivalent to (p,q). Then, we can define the rational "p/q" as [(p,q)].

Remark 1.7 (Dedekind cut). For example, one can define the irrational number π as

$$\pi := \{ q \in \mathbb{Q} : q \le 0 \} \cup \{ q \in \mathbb{Q} : \}$$

$$\tag{5}$$

2 Real numbers

Definition 2.1 (Least upper bound property, completeness). Let F be an ordered field. We say that F has the least upper bound property (or is complete) if any nonempty subset $S \subset F$ that is bounded above has a least upper bound in F.

Theorem 2.2. There exists a complete ordered field. We call it the real numbers and denote it by \mathbb{R} .

Remark 2.3. The complete ordered field \mathbb{R} is unique, which means that if R is another complete ordered field, then there exists a bijective map $\psi : \mathbb{R} \to R$ which preserves the structure of the ordered fields \mathbb{R} and R. We say ψ preserves the structure of \mathbb{R} and R if for any $x, y \in \mathbb{R}$, we have

1.
$$\psi(x+y) = \psi(x) + \psi(y), \ \psi(x \cdot y) = \psi(x) \cdot \psi(y), \ and$$

2. if x < y, then $\psi(x) < \psi(y)$.

Corollary 2.4 (Density of \mathbb{Q} in \mathbb{R}). Let $x, \epsilon \in \mathbb{R}, \epsilon > 0$. By the Archimedean property of \mathbb{R} , there exists $r \in \mathbb{Q}$ such that $|x - r| < \epsilon$.

Remark 2.5 (\mathbb{Q} is not complete). The ordered field \mathbb{Q} is not complete.

3 Metric spaces

Let (X, d) be a metric space and let $S \subset X$.

3.1 Open and closed sets

Definition 3.1 (Open sets). We say S is an open set if

$$\forall p \in S \; \exists r > 0 \; s.t. \; B(p,r) \subset S. \tag{6}$$

Definition 3.2 (Closed sets). We say S is closed if its complement in X, $X \setminus S$ is open.

Proposition 3.3 (Sequential characterization of closed sets). *S* is closed $\iff \forall p_n \in S \text{ s.t. } p_n \to p \in X, we have <math>p \in S$.

Definition 3.4 (Limit points). We say $p \in X$ is a limit point of S if

$$\forall r > 0 \ \exists x \in S \setminus \{p\} \ s.t. \ x \in B(p, r) \tag{7}$$

Proposition 3.5 (Characterization of closed sets using limit points). S is closed \iff S contains all its limit points.

3.2 Completeness

Definition 3.6. A metric space (X, d) is complete if every Cauchy sequence (p_n) in X converges to an element $p \in X$.

Example 3.7.

1. The metric space (X, d) where

$$X = C([0,1],\mathbb{R}) \tag{8}$$

and

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$
(9)

is complete.

2. The metric space (X, d) where

$$X = C^1([a, b], \mathbb{R}) \tag{10}$$

and

$$d(f,g) = \sup_{x \in [a,b], k=0,1} |f^{(k)}(x) - g^{(k)}(x)|$$
(11)

is complete.

3.3 Compactness

Definition 3.8 (Compactness). We say $K \subset X$ is compact if any open cover of K can be reduced to a finite subcover.

Definition 3.9 (Sequential compactness). We say $K \subset X$ is sequentially compact if any sequence in K has a subsequence that converges to a point of K.

Theorem 3.10. A set $K \subset (X, d)$ is compact \iff it is sequentially compact.

Definition 3.11 (Total boundedness). A metric space (X, d) is totally bounded if $\forall \epsilon > 0$, X is the union of of a finite number of open balls of radius ϵ .

Proposition 3.12. The following are equivalent:

- 1. (X, d) is compact,
- 2. (X, d) is sequentially compact, and
- 3. (X, d) is complete and totally bounded.

Proposition 3.13. In any metric space (X, d) if $K \subset X$ is compact, then K is closed and bounded.

Remark 3.14. The converse of the previous proposition is not true in a general metric space.

Theorem 3.15 (Heine-Borel theorem). In $(\mathbb{R}^n, |x - y|)$, any closed and bounded set is compact.

Example 3.16. The closed unit ball in $C([0,1],\mathbb{R})$ equipped with the usual sup norm is not compact. Indeed, consider the sequence of functions (f_n) given by

$$f_n(x) = x^n. (12)$$

If f_n were to converge, then f_n would converge uniformly to some $f \in C([0,1],\mathbb{R})$. But we know f_n converges to g point-wise where

$$g(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases},$$
(13)

which is discontinuous at 1.

3.4 Connectedness

Definition 3.17 (Connectedness).

1. We say a metric space (X, d) is connected if X cannot be written as the union of two disjoint, nonempty, open sets. 2. If $S \subset X$, we say S is connected if the metric space (S, d) is connected.

Proposition 3.18. The metric space (X, d) is connected if and only if the only subsets of X that are both open and closed are X and the empty set \emptyset .

Definition 3.19 (Path-connectedness). We say X is path connected if (X, d) has the property that for any $p, q \in X$, there exists a continuous map γ : $[0,1] \rightarrow X$ with $\gamma(0) = p, \gamma(1) = q$.

Proposition 3.20. Any path-connected metric space is connected.

3.5 Contraction mapping theorem

Definition 3.21 (Contraction). A map $\phi : X \to X$ is a contraction if $\exists c \in (0, 1) \ s.t.$

$$d(\phi(x) - \phi(y)) \le cd(x, y) \ \forall x, y \in X.$$
(14)

Theorem 3.22 (Contraction mapping theorem). Let (X, d) be a nonempty and complete metric space. Suppose $\phi : X \to X$ is a contraction. Then \exists a unique $x \in X$ s.t. $\phi(x) = x$ and we call x a fixed point.

3.6 Tricks and examples

Example 3.23 (Closed and bounded but not compact). The closed unit ball $B \subset C([0,1],\mathbb{R})$ equipped with the usual sup norm is closed and bounded in $C([0,1],\mathbb{R})$ but not compact. Suppose B is compact. Consider the sequence of functions (f_n) given by $f_n(x) = x^n$. Then, \exists subsequence $f_{n_k} \to g \in C([0,1],\mathbb{R})$. But we already know that f_n converges pointwise to f given by

$$f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases},$$
(15)

which has discontinuity at 1, which is contradiction.

Proposition 3.24. Any compact metric space is complete.

Proof. Let (X, d) be a compact metric space. Let (x_n) be a Cauchy sequence in X. Fix $\epsilon > 0$.

1. Since X compact, we know \exists subsequence $x_{n_k} \to x \in X$, i.e., $\exists N_1 \in \mathbb{N}$ s.t.

$$d(x_{n_k}, x) < \epsilon/2 \ \forall k \ge N_1. \tag{16}$$

2. Since (x_n) Cauchy, we know $\exists N_2 \in \mathbb{N}$ s.t.

$$d(x_m, x_n) < \epsilon/2 \ \forall m, n \ge N_2.$$
(17)

3. Hence, take $N = \max\{N_1, N_2\}$, then $\forall k \ge N$, we also have $n_k \ge k \ge N$, in which case

$$d(x_k, x) \le d(x_k, x_{n_k}) + d(x_{n_k}, x) < \epsilon/2 + \epsilon/2 = \epsilon.$$
 (18)

4 Continuous function on metric spaces

4.1 Continuity

Proposition 4.1 (Continuity). The following properties of $f : X \to Y$ are equivalent:

- 1. $x_n \to a \text{ implies } f(x_n) \to f(a),$
- 2. $\forall \epsilon > 0 \ \exists \delta > 0 \ s.t. \ d(x,a) < \delta \ implies \ d(f(x), f(a)) < \epsilon.$
- 3. If \mathcal{O} is any open set containing f(a), then the preimage $f^{-1}(\mathcal{O})$ contains $B(a, \delta)$ for some $\delta > 0$.

Proposition 4.2. Let $f : X \to Y$. Then f is continuous if and only if for any open set $\mathcal{O} \subset Y$ the preimage $f^{-1}(\mathcal{O})$ is open in X.

Definition 4.3 (Uniform continuity). Let $f : X \to Y$. We say f is uniformly continuous on X if $\forall \epsilon > 0 \exists \delta > 0$ s.t. $d(x_1, x_2) < \delta$ implies

$$d(f(x_1), f(x_2)) < \epsilon \ \forall x_1, x_2 \in X.$$

$$(19)$$

Proposition 4.4. Let (X, d) be compact and suppose $f : X \to Y$ is continuous. Then f is uniformly continuous on X.

Remark 4.5. A continuous function on a compact set $K \subset X$ is uniformly continuous on X.

Proposition 4.6 (Failure of uniform continuity). Let $f : X \to Y$. Then f fails to be uniformly continuous if and only if there exists $\epsilon > 0$ and sequences $(p_n), (q_n)$ in X s.t. $d(p_n, q_n) \to 0$ as $n \to \infty$ but $d(f(p_n), f(q_n)) \ge \epsilon \forall n$.

4.2 Extreme value theorem

Proposition 4.7. Let (X, d) be compact and suppose $f : X \to Y$ is continuous. Then f(X) is compact.

Corollary 4.8 (Extreme value theorem). Let (X, d) be compact and suppose $f : X \to \mathbb{R}$ is continuous. Then f attains an absolute max and an absolute min on X.

Proposition 4.9. Let $f : X \to Y$ be continuous. If (X, d) is connected, then f(X) is connected.

4.3 Intermediate value theorem

Corollary 4.10 (Intermediate value theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous. Then f assumes every value between f(a) and f(b).

4.4 Sequences of functions

Definition 4.11 (Convergence of sequences of functions).

- 1. The sequence (f_n) converges pointwise to f if given any $x \in X$ and $\epsilon > 0$, there exists $N = N(x, \epsilon) \in \mathbb{N}$ s.t. $n \geq N$ implies $d(f_n(x), f(x)) < \epsilon$.
- 2. The sequence (f_n) converges uniformly to f if given any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ s.t. $n \ge N$ implies $d(f_n(x), f(x)) < \epsilon \ \forall x \in X$.
- 3. The sequence (f_n) is uniformly Cauchy on X if given any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ s.t. $n \ge N$ implies $d(f_n(x), f_m(x)) < \epsilon \ \forall x \in X$.

Proposition 4.12. Suppose $f_n : X \to Y$ are continuous and $f_n \to f$ uniformly on X. Then, $f : X \to Y$ is continuous.

Proposition 4.13 (Failure of uniform convergence). Consider a sequence of functions $f_n : X \to Y$ and a function $f : X \to Y$ such that $f_n \to f$ pointwise. Suppose that there exists $\epsilon > 0$, N > 0, and a sequence (x_n) in Xs.t. $d(f_n(x_n), f(x_n)) \ge \epsilon \ \forall n \ge N$. Then, uniform convergence fails.

Proposition 4.14.

1. Suppose $f_n : X \to \mathbb{R}$ is a uniformly Cauchy sequence of functions. There exists a function $f : X \to \mathbb{R}$ s.t. $f_n \to f$ uniformly on X. 2. If the f_n are continuous, so is f.

Proposition 4.15.

- 1. Suppose $f_n : X \to Y$ is a uniformly Cauchy sequence of functions. There exists a function $f : X \to Y$ s.t. $f_n \to f$ uniformly on X.
- 2. If the f_n are continuous, so is f.

Proposition 4.16 (Interchanging limit processes).

1. Suppose $f_n : X \to Y$ are continuous on X and $f_n \to f$ uniformly on X. Then, $f : X \to Y$ is continuous.

$$\lim_{x \to a} f(x) = \lim_{x \to a} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{n \to \infty} f_n(a) = f(a).$$
(20)

2. Suppose $f_n : [a, b] \to \mathbb{R}$ are continuous on [a, b] and $f_n \to f$ uniformly on [a, b]. Then, f is continuous on [a, b] and

$$\lim_{n \to \infty} \int_a^b f_n(t) \, dt = \int_a^b f(t) \, dt.$$
(21)

3. Let $I \subset \mathbb{R}$ be an open interval and suppose $f_n : I \to \mathbb{R}$ are C^1 functions. Let $f, g : I \to \mathbb{R}$ and suppose that given any compact subset $K \subset I$, the sequences f_n and f'_n converge uniformly on K to f and g respectively. Then, f is C^1 and f' = g, i.e.,

$$\left(\lim_{n \to \infty} f_n\right)' = \lim_{n \to \infty} f'_n.$$
 (22)

4.5 Tricks and examples

Proposition 4.17. Consider a sequence of functions $f_n : X \to Y$ and a function $f : X \to Y$ s.t. $f_n \to f$ pointwise. Then uniform convergence fails if and only if there exists an $\epsilon > 0$, a sequence (x_n) in X, and a subsequence (f_{n_k}) of (f_n) s.t.

$$d(f_{n_k}(x_k), f(x_k)) \ge \epsilon \ \forall k.$$
(23)

Proof.

- 1. $[\Longrightarrow]$ Since uniform convergence fails, we know $\exists \epsilon > 0$ s.t. $\forall N \in \mathbb{N} \exists n \geq N$ s.t. $\exists x \in X$ s.t. $|f_n(x) f(x)| \geq \epsilon$. For convenience, let $n_0 = 0$. Having chosen n_{k-1} , we can pick $n_k \geq n_{k-1} + 1$ s.t. $\exists x_k$ s.t. $|f_{n_k}(x_k) f(x_k)| \geq \epsilon$.
- 2. [\Leftarrow] For the sake of contradiction, assume $f_n \to f$ uniformly and so does f_{n_k} . In particular, for the given $\epsilon > 0$, we know $\exists N \geq \mathbb{N}$ s.t. $\forall n \geq N, d(f_{n_k}(x) f(x)) < \epsilon \; \forall x$, which is contradiction.

Remark 4.18. The metric space $X = C^1([a, b], \mathbb{R})$ equipped with the norm

$$|f| = \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|$$
(24)

is complete.

Proof. Suppose $f_n \in X$ is Cauchy. Then $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ s.t. $\forall m, n \ge N$, we have

$$\sup_{x \in [a,b]} |f_m(x) - f_n(x)| + \sup_{x \in [a,b]} |f'_m(x) - f'_n(x)| < \epsilon.$$
(25)

Hence, f_n and f'_n are both uniformly Cauchy on [a, b] and thus converges uniformly on [a, b], i.e., $f_n \to f$ and $f'_n \to g$ uniformly. Notice that by uniform convergence, we know g = f'.

Fix $\epsilon > 0$. Since $f_n \to f$ uniformly, we know $\exists N_1 \in \mathbb{N}$ s.t. $\forall n \ge N$,

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| < \epsilon/2.$$
(26)

Since $f'_n \to f'$ uniformly, we know $\exists N_2 \in \mathbb{N}$ s.t. $\forall n \ge N$,

$$\sup_{x \in [a,b]} |f'_n(x) - f'(x)| < \epsilon/2.$$
(27)

Hence, pick $N = \max\{N_1, N_2\}$, in which case, $\forall n \ge N$, we have

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| + \sup_{x \in [a,b]} |f'_n(x) - f'(x)| < \epsilon/2 + \epsilon/2 = \epsilon.$$
(28)

5 Differentiability

5.1 Differentiability

Definition 5.1. Let $f : \mathbb{R}^n \to \mathbb{R}$. We say f is differentiable at $a \in \mathbb{R}^n$ if $\exists c \in \mathbb{R}^n$ s.t. the function r defined by

$$f(a+h) = f(a) + c \cdot h + r(h)$$
 (29)

satisfies

$$\lim_{h \to 0} \frac{r(h)}{|h|} = 0.$$
(30)

Definition 5.2. Let $F = (f_1, \dots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$. We say F is differentiable at $a \in \mathbb{R}^n$ if $\exists C \in \mathcal{M}_{m \times n}$ s.t. the function defined by

$$F(a+h) = F(a) + C \cdot h + r(h) \tag{31}$$

satisfies

$$\lim_{h \to 0} \frac{r(h)}{|h|} = 0.$$
(32)

Theorem 5.3 ("A simple criterion"). Let $\mathcal{O} \subset \mathbb{R}^n$ and $f : \mathcal{O} \to \mathbb{R}$. Suppose $f \in C^1(\mathcal{O}, \mathbb{R})$. Then, f is differentiable at any $x \in \mathcal{O}$.

5.2 Chain rule

Theorem 5.4 (Chain rule). Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $x \in \mathbb{R}^n$. Let $G : \mathbb{R}^m \to \mathbb{R}^k$ be differentiable at $z \equiv F(x)$. Then $H = G \circ F : \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at x and

$$DH(x) = DG(F(x)) \cdot DF(x) \tag{33}$$

where

$$D(F(a)) = \begin{pmatrix} \nabla f_1(a) \\ \vdots \\ \nabla f_m(a) \end{pmatrix}.$$
 (34)

5.3 Clairaut's theorem

Theorem 5.5 (Clairaut's theorem). Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be C^2 . Then

$$\partial_j \partial_k F(x) = \partial_k \partial_j F(x) \ \forall x.$$

5.4 Tricks and examples

Lemma 5.6 ("FTC lemma"). Let $f : (a, b) \to \mathbb{R}$ be C^1 . Then,

$$f(x+y) - f(x) = \left(\int_0^1 f'(x+ty) \, dt\right) y.$$
(35)

Compare the lemma above to mean value theorem.

Theorem 5.7 (Mean value theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then, $\exists c$ between x and x + y s.t.

$$f(x+y) - f(x) = f'(c)y.$$
 (36)

Example 5.8 (Standard pathological example). Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$
 (37)

Notice that $f_x(0,0) = f_y(0,0) = 0$ but f is not continuous or differentiable at (0,0).

6 Taylor's theorem

6.1 Multi-index notation

Let $x = (x_1, \cdots, x_n) \in \mathbb{R}^n$.

Definition 6.1. Multi-index

- 1. A multi-index is an n-tuple $\alpha = (\alpha_1, \dots, \alpha_n)$ where $\alpha_j \in \mathbb{N}_0$.
- 2. Define $x^{\alpha} := x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_n^{\alpha_n}$. In addition, define $x_j^0 := 1$ even if $x_j = 0$.
- 3. The order of α is $|\alpha| := \alpha_1 + \cdots + \alpha_n$.
- 4. Define $\alpha! := \alpha_1! \alpha_2! \cdots \alpha_n!$. In addition, define 0! := 1.

Remark 6.2 (Polynomials). Any polynomial p(x) of order $\leq m$ can be written as

$$p(x) = \sum_{|\alpha| \le m} c_{\alpha} x^{\alpha} \quad where \ c_{\alpha} \ constant.$$
(38)

Definition 6.3. Let $\alpha = (\alpha_1, \dots, \alpha_n)$ be a multi-index and let

$$\partial = (\partial_{x_1}, \cdots, \partial_{x_n}) = (\partial_1, \cdots, \partial_n).$$
(39)

We define

$$\partial^{\alpha} = \partial_1^{\alpha_1} \circ \dots \circ \partial_n^{\alpha_n}. \tag{40}$$

6.2 Multinomial theorem

Theorem 6.4 (Binomial theorem).

$$(x_1 + x_2)^m = \sum_{j=0}^m \frac{m!}{j!(m-j)!} x_1^{m-j} x_2^j.$$
(41)

Theorem 6.5 (Multinomial theorem).

$$(x_1 + \dots + x_n)^m = \sum_{|\alpha|=m} \frac{m!}{\alpha!} x^{\alpha}.$$
(42)

6.3 Taylor's theorem

Theorem 6.6 (Taylor's theorem). Let $m \in \mathbb{N}$. Let $f : \mathbb{R} \to \mathbb{R}$ and suppose $f \in C^{m+1}$. Let $a, x \in \mathbb{R}$. Then,

$$f(x) = \sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-a)^{m+1},$$
(43)

where ξ is strictly between a, x.

Theorem 6.7 (Taylor's theorem). Let $m \in \mathbb{N}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ and suppose $f \in C^{m+1}$. Let $a, x \in \mathbb{R}^n$. Then,

$$f(x) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(a)}{\alpha!} (x - a)^{\alpha} + \sum_{|\alpha| = m+1} \frac{D^{\alpha} f(\xi)}{\alpha!} (x - a)^{\alpha}, \qquad (44)$$

where ξ is strictly between a, x, i.e., ξ lies on the open segment joining a, x.

7 Limit superior and limit inferior

Definition 7.1. Let (a_n) be any sequence in \mathbb{R} , we define

$$\limsup_{n \to \infty} a_n = \lim_{m \to \infty} \sup_{n \ge m} a_n,\tag{45}$$

$$\liminf_{n \to \infty} a_n = \lim_{m \to \infty} \inf_{n \ge m} a_n.$$
(46)

Proposition 7.2. Let (a_n) and (b_n) be sequences in \mathbb{R} , then

- 1. $\limsup(-a_n) = \liminf a_n$,
- 2. $\limsup(ca_n) = c \limsup a_n$ for any c > 0,
- 3. $\limsup(a_n + b_n) \le \limsup a_n + \limsup b_n$,
- 4. $\liminf a_n \leq \limsup a_n$ where equality holds if and only if (a_n) converges, in which case $\liminf a_n = \limsup a_n = \lim a_n$, and
- 5. if (b_n) is a subsequence of (a_n) , then

 $\liminf a_n \le \liminf b_n \le \limsup b_n \le \limsup a_n. \tag{47}$

8 Contraction mapping theorem

Theorem 8.1 (Contraction mapping theorem). Let (X, d) be a nonempty, complete metric space. Suppose $f : X \to X$ has the following property: $\exists k$ with $0 \le k < 1$ s.t.

$$d(f(x), f(y)) \le kd(x, y) \quad \forall x, y \in X.$$

$$(48)$$

Then, f has a unique fixed point in X.

9 Inverse and implicit function theorems

9.1 Inverse function theorem

Theorem 9.1 (Inverse function theorem). Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 on \mathbb{R}^n . Let $a \in \mathbb{R}^n$. We have the following.

1. If $f'(a) \in \mathcal{M}_{n \times n}$ is invertible, then \exists open sets $U \ni a$ and $V \ni f(a) = b$ s.t. $f: U \to V$ is a C^1 -diffeomorphism, i.e., f is one-to-one, onto, and both f and f^{-1} are C^1 .

2. Let
$$g = f^{-1}: V \to U$$
 then g is C^1 and

$$g'(f(x)) = [f'(x)]^{-1} \ \forall x \in U.$$
(49)

Theorem 9.2 (Inverse function theorem). Let V be a finitely dimensional real normed vector space. Suppose $f: V \to V$ is C^1 on V. Let $a \in V$.

Then if $f'(a) \in L(V, V)$ is invertible, then \exists open sets $U_1 \ni a$ and $U_2 \ni f(a) = b$ s.t. $f: U_1 \to U_2$ is a C^1 -diffeomorphism.

9.2 Implicit Function Theorem

Theorem 9.3 (Implicit function theorem). Let $f : \mathbb{R}^{n+m} \to \mathbb{R}^n$ be C^1 . In addition, we write f(x, y) with $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Suppose f(a, b) = 0 and assume $D_x f(a, b) =: A_x$ is invertible. Then

1. \exists open sets $U \ni (a, b)$ in \mathbb{R}^{n+m} and open sets $W \ni b$ in \mathbb{R}^m and C^1 function $g: W \to \mathbb{R}^n$ s.t.

$$\{(x,y) \in U : f(x,y) = 0\} = \{(g(y),y) : y \in W\}.$$
(50)

2. If $A_y = D_y f(a, b)$, then $g'(b) = -A_x^{-1}A_y$.

9.3 Lagrange multipliers

Proposition 9.4 (Lagrange multiplier). Let $f, g \in C^1(\mathbb{R}^3, \mathbb{R})$. Let $S = \{x \in \mathbb{R}^3 : g(x) = 0\}$. Let $a \in S$ and assume $\nabla g(a) \neq 0$. If $f|_S$ has a local maximum at $a \in S$, then $\exists \lambda \in \mathbb{R}$ s.t.

$$\nabla f(a) = \lambda g(a). \tag{51}$$

10 Partition of unity

Proposition 10.1 (Partition of unity). Let $K \subset \mathbb{R}^n$ be compact and suppose $\{U_j, j = 1, \dots, N\}$ is an open cover of K. A C^{∞} partition of unity on K subordinate to this covering is a collection $\{\rho_j, j = 1, \dots, N\}$ of C^{∞} functions $\rho_j : \mathbb{R}^n \to \mathbb{R}$ with the properties

1. supp $\rho_j \subset u_j$ for every j, and

2.
$$\sum_{j=1}^{N} \rho_j = 1 \text{ on } K.$$

11 Basics of measure theory

11.1 σ -algebra

Definition 11.1 (σ -algebra). Let X be a nonempty set. We say $\mathcal{A} \subset \mathcal{P}(X)$ is σ -algebra on X if \mathcal{A} is closed under countable unions and taking complements, i.e.,

- 1. if $E_1, E_2, \dots \in \mathcal{A}$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$, and
- 2. if $E \in \mathcal{A}$, then $E^c := X \setminus E \in \mathcal{A}$.

Remark 11.2. If $E_1, E_2, \dots \in \mathcal{A}$, then $\bigcap_{j=1}^{\infty} E_j \in A$.

Corollary 11.3. If $\mathcal{E} \subset \mathcal{P}(X)$. Then there is a unique smallest σ -algebra that contains \mathcal{E} , $\sigma(\mathcal{E})$. Call it the σ -algebra generated by \mathcal{E} , where

$$\sigma(\mathcal{E}) = \bigcap \{ \sigma - algebra \ that \ contain \ \mathcal{E} \}.$$
(52)

Definition 11.4 (Borel σ -algebra). We define the Borel σ -algebra \mathcal{B}_X on X to be the σ -algebra generated by the set of all open sets in X, i.e.,

$$\mathcal{B}_X = \sigma(\{open \ sets \ in \ X\}). \tag{53}$$

11.2 Measure

Let X be a nonempty set. Let \mathcal{M} be a σ -algebra on X.

Definition 11.5 (Measure). A measure μ on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ s.t.

- 1. $\mu(\emptyset) = 0$, and
- 2. (Countable additivity) if $E_j \in \mathcal{M}, j = 1, 2, \cdots$ disjoint, then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j).$$
(54)

We call (X, \mathcal{M}, μ) a measure space.

Proposition 11.6 (Properties of measures).

- 1. (Monotonocity). Let $E, F \in \mathcal{M}$. Then $E \subset F \implies \mu(E) \le \mu(F)$.
- 2. (Subadditivity). Let $E_1, E_2, \dots \in \mathcal{M}$ not necessarily disjoint, then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \le \sum_{j=1}^{\infty} \mu(E_j).$$
(55)

3. (Continuity from below). Let $E_1 \subset E_2 \subset \cdots$ where $E_j \in \mathcal{M}$. Then,

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j).$$
(56)

4. (Continuity from above). Let $E_1 \supset E_2 \supset \cdots$ where $E_j \in \mathcal{M}$. Assume $\mu(E_1) < \infty$. Then,

$$\mu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j).$$
(57)

Definition 11.7 (Outer measure). An outer measure on set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ s.t.

- 1. $\mu^*(\emptyset) = 0$,
- 2. (Monotonocity) $A \subset B \implies \mu^*(A) \le \mu^*(B)$, and
- 3. (Subadditivity) if $A_j \in \mathcal{P}(X)$, then

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^*(A_j).$$
(58)

Definition 11.8 (μ^* -measurable). Let μ^* be an outer measure on X. Let $A \subset X$. We say A is μ^* -measurable if for every subset $E \subset X$, we have

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$
(59)

Theorem 11.9 (Caratheodory I). Let μ^* be an outer measure on X. The collection $\mathcal{M} \subset \mathcal{P}(X)$ of μ^* -measurable sets is a σ -algebra and $\mu^*|_{\mathcal{M}} =: \mu$ is a measure of X and (X, \mathcal{M}, μ) is a measure space.

Definition 11.10 (Metric outer measure). An outer measure μ^* on X is a metric outer measure if whenever $S_1, S_2 \subset X$ and

$$d(S_1, S_2) = \inf\{d(x_1, x_2) : x_i \in S_i\} > 0,$$
(60)

we have

$$\mu^*(S_1 \cup S_2) = \mu^*(S_1) + \mu^*(S_2).$$
(61)

Theorem 11.11 (Caratheodory II). If μ^* is a metric outer measure on X, then every closed subset in X is μ^* -measurable.

11.3 Lebesgue measure

Definition 11.12 (Lebesgue outer measure). Let

$$\mathcal{E} = \{ bounded open intervals in \mathbb{R}^n \}.$$
(62)

An open interval $I \in \mathcal{E}$ has the form

$$I = \{ x \in \mathbb{R}^n : a_i < x_i < b_i, a_i, b_i \in \mathbb{R}^n \}.$$

$$(63)$$

Let $\lambda : \mathcal{E} \to [0,\infty]$ be given by

$$\lambda(I) = \prod_{j=1}^{n} (b_j - a_j).$$
(64)

If $S \subset \mathbb{R}^n$, let

$$m^*(S) := \inf\left\{\sum_{j=1}^{\infty} \lambda(I_j) : S \subset \bigcup_{j=1}^{\infty} I_j, I_j \in \mathcal{E}\right\}.$$
(65)

Definition 11.13 (Lebesgue measurable sets). We define

 $\mathcal{L}_n = \{ m^* - measurable \ sets \ on \ \mathbb{R}^n \}.$ (66)

By Caratheodory I, we define $m := m^*|_{\mathcal{L}_n}$ to be the Lebesgue measure of \mathbb{R}^n . **Theorem 11.14** (Regularities of Lebesgue measure). Let $B \in \mathcal{L}_n$, then

$$m(B) = \sup\{m(K) : K \subset B, K \text{ compact}\}$$
(67)

$$= \inf\{m(U) : B \subset U, U \text{ open}\}.$$
(68)

11.4 Complete measure space

Definition 11.15. A measure μ on (X, \mathcal{M}) is complete if

$$A \in \mathcal{M}, \mu(A) = 0, S \subset A \implies S \in \mathcal{M}, \mu(S) = 0.$$
⁽⁶⁹⁾

Proposition 11.16. Suppose μ is a measure on (X, \mathcal{F}) that is not complete. Then,

- 1. $\overline{\mathcal{F}} := \{E \cup S : E \in \mathcal{F}, S \subset F \in \mathcal{F}, \mu(F) = 0\}$ is a σ -algebra, and
- 2. $\overline{\mu}(E \cup S) := \mu(E)$ is complete.

12 The Lebesgue integral

12.1 Lebesgue integration

Definition 12.1 (Measurable functions). Let \mathcal{M}, \mathcal{N} be σ -algebras on sets X, Y, respectively. Then, $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ is $(\mathcal{M}, \mathcal{N})$ -measurable if $f^{-1}(\mathcal{N}) \subset \mathcal{M}$.

Remark 12.2.

- 1. If $f: (X, \mathcal{M}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then f is measurable if $f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{M}$.
- 2. To check f is measurable, it is enough to check $f^{-1}(a, \infty) \in \mathcal{M}$ since (a, ∞) generate $\mathcal{B}(\mathbb{R})$.

Definition 12.3 (Simple functions). A function $f : X \to \mathbb{R}$ is simple if it assumes only finitely many distinct values.

Remark 12.4.

1. If c_1, \dots, c_n are the distinct values, we can write

$$f = \sum_{j=1}^{n} c_j \chi_{A_j} \quad where \ A_j = \{ x \in X : f(x) = c_j \}.$$
(70)

We call this the "canonical" or "standard" representation of f.

2. The set $X = \bigcup_{j=1}^{n} A_j$ is a disjoint union.

3. Let $f: (X, \mathcal{M}) \to \mathbb{R}$ be simple. Then, f is measurable if and only if each $A_i \in \mathcal{M}$.

Definition 12.5. Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{S}^+(X, \mathcal{M}, \mu)$ be the set of non-negative measurable simple functions on (X, \mathcal{M}) .

1. If

$$\phi = \sum_{j=1}^{n} c_j \chi_{A_j} \in S^+, \tag{71}$$

define

$$\int_{X} \phi \ d\mu = \sum_{j=1}^{n} c_{j} \mu(A_{j}).$$
(72)

2. If $A \in \mathcal{M}$, define

$$\int_{A} \phi \ d\mu = \int_{X} \phi \chi_A \ d\mu \tag{73}$$

Theorem 12.6 (Ladder theorem). Let $f : (X, \mathcal{M}) \to (\overline{\mathbb{R}}^+, \mathcal{B}(\overline{\mathbb{R}}))$ be measurable and non-negative. Then, there exists simple functions $\phi_n \in S^+$ s.t. $0 \leq \phi_n \nearrow f$ pointwise on X.

Remark 12.7.

- 1. On any $B \in \mathcal{M}$ where f is bounded, $\phi_n \nearrow f$ uniformly on B.
- 2. Let $f: (X, \mathcal{M}) \to \overline{\mathbb{R}}$. Write $f = f^+ f^-$. Set $\phi_n(x) = \phi_n^+(x) - \phi_n^-(x)$ where $\phi_n^\pm \nearrow f^\pm$. (74)

Notice that $\phi_n \to f$ pointwise on X.

3. Let $f: (X, \mathcal{M}) \to \mathbb{C}$ where f = g + ih. Apply above to g, h, we get

$$\psi_n + i\zeta_n \to f \text{ pointwise on } X.$$
 (75)

Definition 12.8. Let \mathcal{M}^+ be the set of non-negative measurable functions $f: X \to \overline{\mathbb{R}}$ on (X, \mathcal{M}, μ) . Let $f \in \mathcal{M}^+$. Define

$$\int_X f \ d\mu = \sup\left\{\int \phi \ d\mu : 0 \le \phi \le f, \ where \ \phi \ is \ simple \ and \ measurable\right\}.$$
(76)

Definition 12.9.

1. Let $f: X \to \overline{\mathbb{R}}$ be measurable. Write $f = f^+ - f^-$ where $f^{\pm} \in \mathcal{M}^+$. Define

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu, \tag{77}$$

provided at least one of $\int f^{\pm}$ is finite.

2. If both $\int f^{\pm} < \infty$, we say f is integrable and write $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

Remark 12.10. Since

$$f^{\pm} \le |f| = f^+ + f^-,$$
 (78)

we see that f is integrable if and only if $\int |f| d\mu < \infty$.

Definition 12.11.

1. Let $f: X \to \mathbb{C}$ be measurable. Write $f = \operatorname{Re} f + \operatorname{Im} f$. Define

$$\int f \ d\mu = \int \operatorname{Re} f \ d\mu + i \int \operatorname{Im} f \ d\mu.$$
(79)

2. If Re f, Im $f \in \mathcal{L}^1$, we say f is integrable and write $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

Remark 12.12. Since

$$|f| \le |\operatorname{Re} f| + |\operatorname{Im} f| \le 2|f|, \tag{80}$$

we see that f is integrable if and only if $\int |f| d\mu < \infty$.

12.2 Convergence theorems

Theorem 12.13 (Monotone convergence theorem). Let $f_n \leq f_{n+1}, f_n \in \mathcal{M}^+ \forall n$. Let f be the pointwise limit of f_n . Then,

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu.$$
(81)

Lemma 12.14 (Fatou's lemma). Let $f_n \in \mathcal{M}^+ \forall n$. Then,

$$\int \left(\liminf_{n \to \infty} f_n\right) \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu.$$
(82)

Theorem 12.15 (Dominated convergence theorem). Let $f_n \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, $f_n : X \to \mathbb{R}$. Let $f : X \to \mathbb{R}$ and assume $f_n \to f$ pointwise $\forall x \in X$. Assume there exists $g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$ s.t. $|f_n| \leq g \forall n \text{ on } X$. Then, $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$ and

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu.$$
(83)

Remark 12.16. In the monotone convergence theorem, Fatou's lemma, and the dominated convergence theorem, the hypothesis that $f_n \to f \ \forall x \in X$ can be weakened to $f_n \to f$ a.e. on X.

12.3 L^p spaces

Definition 12.17 (\mathcal{L}^p) . For $p \in [1, \infty)$, we define

$$\mathcal{L}^{p}(X, \mathcal{M}, \mu) = \left\{ f : f \text{ measurable}, \int_{X} |f|^{p} d\mu < \infty \right\}.$$
(84)

Definition 12.18 (L^p) . For $p \in [1, \infty)$, we define $L^p(X, \mathcal{M}, \mu)$ to be the equivalence classes of elements of \mathcal{L}^p where $f \sim g \iff f = g$ a.e.

Definition 12.19 (Norm on L^p). We define the norm on L^p by

$$|[f]|_{L^p} = \left(\int_X |f|^p \ d\mu\right)^{1/p},\tag{85}$$

where f is any representative of [f].

Definition 12.20 (\mathcal{L}^{∞}) . We define $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ to be the set of measurable functions f s.t. $\exists M$ s.t. $|f| \leq M$ a.e. on X.

Definition 12.21 (L^{∞}) . We define $L^{p}(X, \mathcal{M}, \mu)$ to be the equivalence classes of elements of \mathcal{L}^{∞} .

Definition 12.22 (Norm on L^{∞}). We define the norm on L^{∞} by

$$|f|_{L^{\infty}} = \inf\left\{\sup_{X} |g| : g \in [f]\right\}$$
(86)

$$= \inf \{M : \mu\{x : f(x) > M\} = 0\}.$$
 (87)

Proposition 12.23 (Minkowski's inequality). Let $p \in [1, \infty]$. For any measurable functions v, w, we have

$$|v+w|_{L^p} \le |v|_{L^p} + |w|_{L^p}.$$
(88)

Proposition 12.24 (Hölder's inequality). Let $p \in [1, \infty]$. Define q by 1/p + 1/q = 1. For any measurable functions f, g, we have

$$|fg|_{L^1} \le |f|_{L^p} |g|_{L^q}. \tag{89}$$

Theorem 12.25. For $p \in [1, \infty]$, the normed vector space $L^p(X, \mathcal{M}, \mu)$ is complete.

Corollary 12.26. For $p \in [1, \infty)$, if $g_k \to g$ in $L^p(X, \mathcal{M}, \mu)$, then \exists subsequence that converges pointwise μ -a.e. to g.

Proposition 12.27. For $p \in [1, \infty)$, $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.

12.4 Tonelli's and Fubini's theorems

Theorem 12.28 (Tonelli's theorem). We write $\mathbb{R}^n = \mathbb{R}^k_x \times \mathbb{R}^l_y$ with k+l = n. Let $(x, y) \in \mathbb{R}^n$. Given f(x, y), we set $f_x(y) = f^y(x) = f(x, y)$. Let $f \ge 0$ be Borel measurable on \mathbb{R}^n . Then, the functions

$$g(x) = \int f_x(y) \, dm(y) \tag{90}$$

$$h(y) = \int f^y(x) \, dm(x) \tag{91}$$

are Borel mesurable and

$$\int_{\mathbb{R}^n} f \ dm(x,y) = \int_{\mathbb{R}^k} g(x) dm(x) = \int_{\mathbb{R}^l} h(y) dm(y). \tag{92}$$

Theorem 12.29 (Fubini's theorem). Let f be Borel measurable on \mathbb{R}^n and $\int |f| dm < \infty$. Then, f_x is integrable for a.e. x and f^y is integrable for a.e. y, and

$$\int f \, dm = \iint f(x,y) \, dm(y)dm(x) \tag{93}$$

$$= \iint f(x,y) \ dm(x)dm(y). \tag{94}$$

Proposition 12.30. Suppose f is Lebesgue measurable on \mathbb{R}^n . Then, there exists a Borel measurable function g s.t. f = g a.e. with respect to the Lebesgue measure m.

Remark 12.31 (Fubini's theorem for Lebesgue measurable functions). Let $f \in L^1(\mathbb{R}^n, m)$. We can choose Borel measurable function g s.t. f = g m-a.e. Apply Fubini's theorem to g and notice that

$$\int |f| \, dm = \int |g| \, dm \quad and \quad \int f \, dm = \int g \, dm. \tag{95}$$

12.5 Change of variable theorem

Theorem 12.32 (Change of variable). Let U, V be open in \mathbb{R}^n and let $\phi : U \to V$ be a C^1 diffeomorphism. Then, for any non-negative Lebesgue measurable function f_n, f on V, we have

$$\int_{V} f \ dm = \int_{U} (f \circ \phi) |J_{\phi}| \ dm, \tag{96}$$

where

$$J_{\phi} = \det \phi'. \tag{97}$$

In particular,

$$m(\phi(A)) = \int_{A} |J_{\phi}| \ dm, \tag{98}$$

where $A \subset U$ is any Lebesgue measurable set.

13 Normed vector spaces

Definition 13.1 (Norm). A norm on (V, \mathbb{F}) is a function $\|\cdot\| : V \to \mathbb{R}$ with the following properties. For any $v, w \in W, \alpha \in \mathbb{F}$,

- 1. $||v|| \ge 0$ and ||v|| = 0 only for v = 0,
- 2. $\|\alpha v\| = |\alpha| \|v\|$,
- 3. $||v + w|| \le ||v|| + ||w||.$

A vector space with a normed defined on it, $(V, \|\cdot\|)$, is called a normed vector space.

Definition 13.2 (Equivalent norms). Let (V, \mathbb{F}) be a vector space. Two norms on V, $\|\cdot\|_1$, $\|\cdot\|_2$ are said to be equivalent if there exist positive constants C_1, C_2 s.t.

$$C_1 \|v\|_1 \le \|v\|_2 \le C_2 \|v\|_1 \quad \forall v \in V.$$
(99)

Proposition 13.3. If (V, \mathbb{R}) is a finite dimensional vector space of dimension n, then there exists a linear map $i : \mathbb{R}^n \to V$ s.t. if $\|\cdot\|_V$ is any norm on V, then $i : (\mathbb{R}^n, \|\cdot\|) \to (V, \|\cdot\|_V)$ is a homeomorphism where

 $c_1|x| \le \|i(x)\|_V \le c_2|x| \quad for some \ positive \ constants \ c_1, c_2. \tag{100}$

14 Compactness in function spaces

Definition 14.1 (Equicontinuity). Let (X, d) be a metric space. Let \mathcal{F} be a family of functions $f : X \to \mathbb{R}$. We say \mathcal{F} is equicontinuous on X if given any $\epsilon > 0$ there exists $\delta > 0$ s.t. if $d(p,q) < \delta$, then

$$|f(p) - f(q)| < \epsilon \quad \forall f \in \mathcal{F}.$$
(101)

Theorem 14.2 (Arzela-Ascoli theorem). Let (X, d) be a compact metric space. Let $K \subset C(X, \mathbb{R})$ be closed, bounded, and equicontinuous, then K is compact.

Definition 14.3 (Pointwise boundedness). We say $\mathcal{F} \subset C(X, \mathbb{R})$ is pointwise bounded if given any $p \in X$, there exists M_p s.t.

$$|f(p)| \le M_p \quad \forall f \in \mathcal{F}. \tag{102}$$

Corollary 14.4. Let (X, d) be a compact metric space.

- 1. If $\mathcal{F} \subset C(X, \mathbb{R})$ is bounded and equicontinuous. Then, $\overline{\mathcal{F}}$ is compact in $C(X, \mathbb{R})$.
- 2. If $\mathcal{F} \subset C(X, \mathbb{R})$ is pointwise bounded and continuous, then $\overline{\mathcal{F}}$ is compact in $C(X, \mathbb{R})$.

15 Density and approximation in function spaces

Proposition 15.1 (Differentiation under the integral sign).

1. Let (X, \mathcal{M}, μ) be a measure space. Suppose $f : [a, b]_t \times X \to \mathbb{C}$ where $-\infty < a < b < \infty$ and $f(t, \cdot)$ is integrable for $t \in [a, b]$. Let

$$F(t) = \int_X f(t,x) \, d\mu(x).$$
 (103)

Suppose $\partial_t f(t, x)$ exists $\forall t, x$ and suppose $\exists g \in L^1(X, \mathcal{M}, \mu)$ s.t.

$$\left|\partial_t f(t, x)\right| \le g(x) \quad \forall t, x. \tag{104}$$

Then, F is differentiable and

$$F'(t) = \int_X \partial_t f(t, x) \, d\mu(x). \tag{105}$$

2. If $\partial_t f(\cdot, x)$ is continuous for each x, then F' is continuous.

Definition 15.2 (Convolution). Let $f \in C(\mathbb{R}^n, \mathbb{R})$ and $g \in C_c(\mathbb{R}^n, \mathbb{R})$. Then, the convolution of f and g, f * g, is given by

$$(f*g)(x) = \int_{\mathbb{R}^n} f(x-y)g(y) \, dy = \int_{\mathbb{R}^n} f(y)g(x-y) \, dy.$$
(106)

Proposition 15.3. Let $f \in C(\mathbb{R}^n, \mathbb{R})$. Let $g \in C_c^k(\mathbb{R}^n, \mathbb{R})$ where $k \geq 0$. Then,

- 1. $\operatorname{supp} f * g \subset \overline{\operatorname{supp} f + \operatorname{supp} g},$
- 2. $f * g \in C^k(\mathbb{R}^n, \mathbb{R})$ and for $|\alpha| \leq k$, we have

$$\partial^{\alpha}(f*g) = f*(\partial^{\alpha}g), \tag{107}$$

3. if $f \in C^k(\mathbb{R}^n, \mathbb{R})$, then

$$\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g = f * (\partial^{\alpha} g).$$
(108)

15.1 Approximate identities

Definition 15.4 (Approximate identities). Take $g \in C_c^{\infty}(\mathbb{R}^n, \mathbb{R})$ satisfying the following properties:

- 1. $g \ge 0$,
- 2. supp $g \subset \overline{B(0,1)}$, and
- 3. $\int_{\mathbb{R}^n} g(x) \, dx = 1.$

We say the sequence of functions (g_k) is an approximate identity where g_k is given by

$$g_k(x) = k^n g(kx), \quad k = 0, 1, \cdots.$$
 (109)

Remark 15.5. Notice that g_k satisfy the following properties:

- 1. $g_k \ge 0$,
- 2. supp $g_k \subset \overline{B(0, 1/k)}$, and
- 3. $\int_{\mathbb{R}^n} g_k(x) \, dx = 1.$

Proposition 15.6. For $m \ge 0$, let $f \in C^m(\mathbb{R}^n, \mathbb{R})$. Let (g_k) be an approximate identity. Define $f_k \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ by

$$f_k(x) = (f * g_k)(x).$$
 (110)

Then, for any compact set $K \subset \mathbb{R}^n$ and any multiindex α with $|\alpha| \leq m$, we have $\partial^{\alpha} f_k \to \partial^{\alpha} f$ uniformly on K as $k \to \infty$.

15.2 Approximation theorems

Theorem 15.7 (Weierstrass approximation theorem). Let $f \in C([a, b], \mathbb{R})$. Then, there exists a sequence of polynomials (p_n) s.t. $p_n \to f$ uniformly on [a, b] as $n \to \infty$, i.e., the set of all polynomials on [a, b] is dense in $C([a, b], \mathbb{R})$.

Definition 15.8 (Algebra). An algebra of real-valued (resp. complex-valued) functions on a set X is a set of functions that is closed under addition, multiplication, and scalar multiplication by $\alpha \in \mathbb{R}$ (resp. $\alpha \in \mathbb{C}$).

Definition 15.9 (Self-adjoint). An algebra of function $f : X \to \mathbb{C}$ where X is a compact metric space is said to be self-adjoint if $f \in \mathcal{A} \implies \overline{f} \in \mathcal{A}$.

Theorem 15.10 (Stone-Weierstrass theorem (real version)). Let X be a compact metric space. Let $\mathcal{A} \subset C(X, \mathbb{R})$ be a sub-algebra. Suppose $1 \in \mathcal{A}$ and \mathcal{A} separates points of X, i.e., if $p, q \in X, p \neq q$, then $\exists h_{pq} \in \mathcal{A}$ s.t. $h_{pq}(p) \neq h_{pq}(q)$. Then, \mathcal{A} is dense in $C(X, \mathbb{R})$.

Theorem 15.11 (Stone-Weierstrass theorem (complex version)). Let (X, d)be a compact metric space. Let $\mathcal{A} \subset C(X, \mathbb{C})$ be a self-adjoint sub-algebra. Suppose $1 \in \mathcal{A}$ and \mathcal{A} separates points of X, then \mathcal{A} is dense in $C(X, \mathbb{C})$.

Definition 15.12 (Trigonometric polynomials). Define the set of all trigonometric polynomials TP to be

$$TP = \left\{ \sum_{|k| \le N} a_k e^{ik\theta}, N = 0, 1, \cdots, a_k \in \mathbb{C} \right\}.$$
 (111)

Proposition 15.13. Consider the set of periodic functions

$$C_p([0,2\pi],\mathbb{C}) = \{ f \in C([0,2\pi],\mathbb{C}), f(0) = f(2\pi) \}.$$

Then the set of all trignometric polynomials TP is dense in $C_p([0, 2\pi], \mathbb{C})$.

16 Existence and uniqueness for systems of ODEs

Consider the following IVP:

$$\frac{dy}{dt} = F(t, y), y(t_0) = y_0.$$
(112)

Theorem 16.1 (Local existence). Let Ω be an open subset of \mathbb{R}^n and let $y_0 \in \Omega$. Let $I \subset \mathbb{R}$ be an open interval containing t_0 . Suppose $F : I_t \times \Omega_y \to \mathbb{R}^n$ is continuous and for any compact interval $I_c \subset I$ and compact $K \subset \Omega$ $\exists L > 0 \ s.t.$

$$|F(t, y_1) - F(t, y_2)| \le L|y_1 - y_2| \quad \forall t \in I_c \text{ and } y_1, y_2 \in K.$$
(113)

Then, IVP has a C^1 solution on some open interval containing t_0 .

Theorem 16.2 (Uniqueness). Let Ω, I, F as above. Let $I' \subset I$ be an open subinterval containing t_0 on which C^1 solutions y and z of IVP are given. Then y = z on I'.

Proposition 16.3 (Uniform local existence). Let Ω , I, F as above. Then, for any fixed compact interval $I_c \subset I$ and fixed compact set $K \subset \Omega$, $\exists T > 0$ s.t. for each $t_0 \in I_c$, $y_0 \in K$, a unique C^1 solution of IVP exists on $[t_0 - T, t_0 + T]$.

Remark 16.4. If $F \in C^1(\mathbb{R} \times \mathbb{R}^n)$, then F satisfies uniform local existence when I is any bounded open interval and $\Omega \subset \mathbb{R}^n$ is any convex, bounded, open set.

Proposition 16.5 (Criterion for global existence). Let Ω, I, F as above. Suppose that if $J \subset I$ is any bounded open subinterval containing t_0 on which a C^1 solution y exists, there exists a compact set $K \subset \Omega$ s.t. $y(t) \in K \forall t \in J$. Then, y extends uniquely to a C^1 solution on all of I.

Lemma 16.6 (Gronwall's lemma). Let I = [a, b] and suppose $\alpha, \beta \in C(I, \mathbb{R})$. Assume $u \in C^1(I, \mathbb{R})$ satisfies

$$u'(t) \le \alpha(t)u(t) + \beta(t) \ \forall t \in I \quad and \quad u(a) = u_0.$$
(114)

Then,

$$u(t) \le u_0 \exp\left(\int_a^t \alpha(r) \, dr\right) + \int_a^t \exp\left(\int_s^t \alpha(r) \, dr\right) \beta(s) \, ds \quad \forall t \in I.$$
(115)

Proposition 16.7 (Linear energy estimate). Consider a C^1 solution to the IVP

$$\frac{dy}{dy} = A(t)y + B(t), y(0) = y_0$$
(116)

on an interval $I \ni 0$. Assume $A \in C(I, M(n, \mathbb{R}))$ and $B \in C(I, \mathbb{R}^n)$. If $||A(t)|| \leq K \ \forall t \in I$, then $\forall t \in I, t \geq 0, y(t)$ satisfies

$$|y(t)|^{2} \le e^{(2K+1)t} |y_{0}|^{2} + \int_{0}^{t} e^{(2K+1)(t-s)} |B(s)|^{2} ds$$
(117)

The same formula holds for $t \in I, t \leq 0$, but with B(s) replaced by B(-s)and t replaced by |t| on the right.

Corollary 16.8. If y_1 and y_2 are C^1 solutions on I, then $y_1 = y_2$.

17 Introduction to Complex Analysis

17.1 Complex numbers

Definition 17.1. The field of complex numbers \mathbb{C} is a set of ordered pairs (a, b) where $a, b \in \mathbb{R}$ with operations of addition and multiplication defined by

$$(a,b) + (c,d) = (a+c,b+d),$$
(118)

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc).$$
 (119)

Remark 17.2. Define i = (0, 1). In addition, if we write (a, 0) as a, then we have

$$(a,b) = (a,0) + (b,0)(0,1) = a + ib.$$
(120)

Definition 17.3 (Complex conjugate). The complex conjugate of z is given by

$$\bar{z} = a - ib. \tag{121}$$

Definition 17.4 (Norm on \mathbb{C}). Define

$$|z| = |(a,b)| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}.$$
(122)

17.2 Functions on \mathbb{C}

Consider $f : \mathbb{C} \to \mathbb{C}$. We write

$$f(z) = u(z) + iv(z) \tag{123}$$

where $u, v : \mathbb{C} \to \mathbb{R}$.

Definition 17.5 (Analytic function). Let $\Omega \subset \mathbb{C}$ be open. Let $f : \Omega \to \mathbb{C}$ be C^1 , *i.e.*, Re f, Im f are C^1 . We say f is analytic (or holomorphic) on Ω if

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
(124)

exists for all $z \in \Omega$. If so, we write $f \in H(\Omega)$.

Remark 17.6. If $f \in H(\Omega)$, we write

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h},$$
(125)

and we say f is complex-differentiable at z.

Theorem 17.7 (Cauchy-Riemann equations). Let $f : \Omega \to \mathbb{C}$ be C^1 . Then f = u + iv is analytic on Ω if and only if f satisfy the Cauchy-Riemann equations on Ω , *i.e.*,

$$f_x = \frac{1}{i} f_y, \tag{126}$$

or, equivalently,

$$(u_x, v_x) = (v_y, -u_y),$$
 (127)

or, equivalently,

$$u_x = v_y \tag{128}$$

$$u_y = -v_x. (129)$$

Remark 17.8. Let f be as above. Then, we have $f' = f_x = \frac{1}{i}f_y$ on Ω .

Theorem 17.9 (Cauchy's theorem). Let Ω be a bounded, connected open set in \mathbb{C} with a C^{∞} boundary $\partial\Omega$, oriented positively. If $f \in C^1(\overline{\Omega}, \mathbb{C})$ is analytic in Ω , then

$$\int_{\partial\Omega} f(z) \, dz = 0. \tag{130}$$

Theorem 17.10 (Cauchy integral formula). Let f be as above. If $a \in \Omega$, then

$$f(a) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{z-a} dz.$$
(131)

Corollary 17.11 (Smoothness). Let f, Ω be as above. If $a \in \Omega$, then, for any $n \in \mathbb{N}$,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{(z-a)^{n+1}} dz.$$
 (132)

Consequently, f is C^{∞} in Ω and $f^{(n)}(a) \in H(\Omega) \ \forall n \in \mathbb{N}$.

Corollary 17.12 (Cauchy's estimate). Let $f \in H(B(a, R))$ with R > 0. Suppose

$$|f(z)| \le M \quad \forall z \in B(a, R).$$
(133)

Then,

$$|f(z)| \le \frac{n!M}{R^n}.\tag{134}$$

Theorem 17.13 (Liouville's theorem). Let $f \in H(\mathbb{C})$, i.e., an entire function, and bounded, i.e., $\exists M > 0$ s.t. $|f(z)| \leq M \forall z \in \mathbb{C}$. Then f is constant. **Corollary 17.14** (Mean value property I). Let $f \in C^1(\overline{B(a,r)}, \mathbb{C})$ be analytic in B(a,r). Then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) \, dt = \frac{1}{2\pi r} \int_{\partial B(a,r)} f(z) \, ds.$$
(135)

Here, ds = |z'(t)| dt.

Corollary 17.15 (Mean value property II). With the same hypothesis as above, we have

$$f(a) = \frac{1}{\pi r^2} \int_{B(a,r)} f(z) \, dx dy.$$
(136)

Theorem 17.16 (Maximum modulus theorem). Let Ω be bounded, connected, open in \mathbb{C} . Suppose $f \in C(\overline{\Omega}, \mathbb{C})$ and analytic in Ω . Then

- 1. If $a \in \Omega$ and $|f(a)| \ge |f(z)| \ \forall z \in \Omega$, then |f| is constant on Ω .
- 2. As a result, $\sup_{z\in\overline{\Omega}} |f(z)| = \sup_{z\in\partial\Omega} |f(z)|$.

Theorem 17.17 (Power series expansions). Let Ω be bounded, connected, open in \mathbb{C} with $\partial\Omega$ oriented positively. Suppose $f \in C^1(\overline{\Omega}, \mathbb{C})$ and f is analytic in Ω . Let $a \in \Omega$ and r > 0 s.t. $\overline{B(a, r)} \subset \Omega$. Then, for $z \in B(a, r)$, we have

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 (137)

where

$$c_n = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(w)}{(w-a)^{n+1}} \, dw.$$
 (138)

Theorem 17.18 (Morera's theorem). Let $f : \Omega \to \mathbb{C}$ with Ω open. Assume f is continuous and $\int_T f(z) dz = 0$ for every triangular curve T in Ω . Then, f is analytic in Ω .