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1 Natural numbers, integers, rationals

Definition 1.1 (Natural numbers). We define zero and the natural numbers
using sets by taking

0:=0,1:={0},2:={0,{0}}, ete. (1)

Equivalently, we can rewrite the definition as follows:
0:=0,1:={0},2:={0,1}, ete. (2)
Remark 1.2. Let Ny ={0,1,2,---}. We can define m < n to mean m C n.

Remark 1.3 (Addition). Addition of elements m,n € Ny can be defined as
follows:

1. Taking the disjoint union m Un.

2. Search Ny for the unique set that can be put into one-to-one correspon-
dence with m Un.

Remark 1.4 (Multiplication). Multiplication is defined by repeated addition.

Definition 1.5 (Integers). First, we say two ordered pairs of elements of Ny,
(m,n), (m',n") are equivalent if

m+n'=n+m (3)

in which case we write (m,n) ~ (m',n’). We define the equivalence class
of (m,n), denoted as [(m,n)], to be the set of all ordered pairs equivalent to
(m,n). Then, we can define the integer “m —n” as [(m,n)].

Definition 1.6 (Rationals). Assuming q # 0,q" # 0, we say to ordered pairs
of elements of Ny, (p,q), (p',q") are equivalent if
pd =p'q, (4)

in which case we write (p,q) ~ (p',q"). We define the equivalence class of
(p,q), denoted as [(p, q)], to be the set of all ordered pairs equivalent to (p, q).
Then, we can define the rational “p/q” as [(p,q)].

Remark 1.7 (Dedekind cut). For ezample, one can define the irrational
number T as

T:={qeQ:¢q<0}U{geQ:} (5)
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2 Real numbers

Definition 2.1 (Least upper bound property, completeness). Let F' be an
ordered field. We say that F has the least upper bound property (or is com-
plete) if any nonempty subset S C F' that is bounded above has a least upper
bound in F'.

Theorem 2.2. There exists a complete ordered field. We call it the real
numbers and denote it by R.

Remark 2.3. The complete ordered field R is unique, which means that if R
1s another complete ordered field, then there exists a bijective map ¢ : R —
R which preserves the structure of the ordered fields R and R. We say v
preserves the structure of R and R if for any x,y € R, we have

L (r+y) = () +(y), v(x-y) =) - Y(y), and

2. if x <y, then ¥(z) < Y(y).

Corollary 2.4 (Density of Q in R). Let z,e € R, e > 0. By the Archimedean
property of R, there exists r € Q such that |x —r| < e.

Remark 2.5 (Q is not complete). The ordered field Q is not complete.

3 Metric spaces

Let (X, d) be a metric space and let S C X.

3.1 Open and closed sets
Definition 3.1 (Open sets). We say S is an open set if

Vpe S Jr>0 st B(p,r)CS. (6)

Definition 3.2 (Closed sets). We say S is closed if its complement in X,
X\ S is open.

Proposition 3.3 (Sequential characterization of closed sets). S is closed
<~ Vp, €S s.t. p, > p€ X, we havep € S.



Definition 3.4 (Limit points). We say p € X is a limit point of S if
Vr >0 dz e S\ {p} st =€ B(p,r) (7)

Proposition 3.5 (Characterization of closed sets using limit points). S is
closed <= S contains all its limit points.

3.2 Completeness

Definition 3.6. A metric space (X,d) is complete if every Cauchy sequence
(pn) in X converges to an element p € X .

Example 3.7.

1. The metric space (X,d) where

X =C([0,1,R) (8)
and
d(f,g9) = milﬁf)u |f(z) — g(x)] 9)

18 complete.

2. The metric space (X, d) where

X = C'([a,}],R) (10)
and
d(f.g) = sup [fP(x) = g"(2)] (11)
z€la,b],k=0,1

18 complete.

3.3 Compactness

Definition 3.8 (Compactness). We say K C X is compact if any open cover
of K can be reduced to a finite subcover.

Definition 3.9 (Sequential compactness). We say K C X is sequentially

compact if any sequence in K has a subsequence that converges to a point of
K.



Theorem 3.10. A set K C (X,d) is compact <= it is sequentially com-
pact.

Definition 3.11 (Total boundedness). A metric space (X, d) is totally bounded
if Ve > 0, X s the union of of a finite number of open balls of radius €.

Proposition 3.12. The following are equivalent:
1. (X,d) is compact,
2. (X,d) is sequentially compact, and
3. (X, d) is complete and totally bounded.

Proposition 3.13. In any metric space (X,d) if K C X is compact, then
K s closed and bounded.

Remark 3.14. The converse of the previous proposition is not true in a
general metric space.

Theorem 3.15 (Heine-Borel theorem). In (R™, |x — y|), any closed and
bounded set is compact.

Example 3.16. The closed unit ball in C([0,1],R) equipped with the usual
sup norm is not compact. Indeed, consider the sequence of functions (f,)
given by

fulz) = 2", (12)
If f, were to converge, then f, would converge uniformly to some f €
C([0,1],R). But we know f, converges to g point-wise where

, (13)

g(x):{o 0<z<l

1 =1

which s discontinuous at 1.

3.4 Connectedness

Definition 3.17 (Connectedness).

1. We say a metric space (X,d) is connected if X cannot be written as
the union of two disjoint, nonempty, open sets.
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2. If S C X, we say S is connected if the metric space (S, d) is connected.

Proposition 3.18. The metric space (X,d) is connected if and only if the
only subsets of X that are both open and closed are X and the empty set ().

Definition 3.19 (Path-connectedness). We say X is path connected if (X, d)
has the property that for any p,q € X, there exists a continuous map ~y :
[0,1] = X with 7(0) = p,7(1) = q.

Proposition 3.20. Any path-connected metric space is connected.

3.5 Contraction mapping theorem

Definition 3.21 (Contraction). A map ¢ : X — X is a contraction if
Je € (0,1) s.t.
d(¢(x) — ¢(y)) < cd(z,y) Yo,y € X. (14)

Theorem 3.22 (Contraction mapping theorem). Let (X,d) be a nonempty
and complete metric space. Suppose ¢ : X — X is a contraction. Then 3 a
unique x € X s.t. ¢p(x) =z and we call x a fized point.

3.6 Tricks and examples

Example 3.23 (Closed and bounded but not compact). The closed unit ball
B c C([0,1],R) equipped with the usual sup norm is closed and bounded in
C([0,1],R) but not compact. Suppose B is compact. Consider the sequence
of functions (f,) given by fn.(x) = a™. Then, 3 subsequence f,, — g €
C([0,1],R). But we already know that f, converges pointwise to f given by

0 0<z<«l

flx) = , (15)
1 z=1

which has discontinuity at 1, which is contradiction.

Proposition 3.24. Any compact metric space is complete.

Proof. Let (X, d) be a compact metric space. Let (x,) be a Cauchy sequence
in X. Fix e > 0.

1. Since X compact, we know 3 subsequence z,, — z € X, ie., IN; € N
s.t.
d(zp,,r) < €/2Vk > Nj. (16)
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2. Since (z,) Cauchy, we know 3N, € N s.t.
(X, xy) < €/2 ¥Vm,n > Ns. (17)

3. Hence, take N = max{Ny, Ny}, then Yk > N, we also have n, > k >
N, in which case

d(zg,x) < d(xg, Tp,) + d(xp,, ) < €/2+€/2 = (18)

]

4 Continuous function on metric spaces

4.1 Continuity

Proposition 4.1 (Continuity). The following properties of f : X — Y are
equivalent:

1. z, — a implies f(z,) — f(a),
2. Ye>036>0 s.t. dxz,a) < implies d(f(z), f(a)) <e.

3. If O is any open set containing f(a), then the preimage f~*(O) contains
B(a,d) for some § > 0.

Proposition 4.2. Let f : X — Y. Then f is continuous if and only if for
any open set O CY the preimage f~1(O) is open in X.

Definition 4.3 (Uniform continuity). Let f : X — Y. We say f is uniformly
continuous on X if Ve >0 3§ > 0 s.t. d(xy,z2) < § implies

d(f(x1), f(x2)) < € Vay, 20 € X. (19)

Proposition 4.4. Let (X, d) be compact and suppose f: X — Y is contin-
wous. Then f is uniformly continuous on X.

Remark 4.5. A continuous function on a compact set K C X s uniformly
continuous on X.

Proposition 4.6 (Failure of uniform continuity). Let f : X — Y. Then f
fails to be uniformly continuous if and only if there exists e > 0 and sequences

(Pn), (gn) in X s.t. d(pn,gn) — 0 asn — 0o but d(f(pn), f(gn)) > € Vn.
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4.2 Extreme value theorem

Proposition 4.7. Let (X, d) be compact and suppose f : X — Y is contin-
uous. Then f(X) is compact.

Corollary 4.8 (Extreme value theorem). Let (X, d) be compact and suppose
f X — R is continuous. Then f attains an absolute max and an absolute
min on X.

Proposition 4.9. Let f : X — Y be continuous. If (X,d) is connected, then
f(X) is connected.

4.3 Intermediate value theorem

Corollary 4.10 (Intermediate value theorem). Let f : [a,b] — R be contin-
uous. Then [ assumes every value between f(a) and f(b).

4.4 Sequences of functions
Definition 4.11 (Convergence of sequences of functions).

1. The sequence (f,) converges pointwise to f if given any x € X and € >
0, there exists N = N(x,¢) € N s.t. n > N implies d(fn(x), f(z)) <.

2. The sequence (f,) converges uniformly to f if given any € > 0, there
exists N = N(e) € N s.t. n > N implies d(f,(z), f(z)) < e Vx € X.

3. The sequence (f,) is uniformly Cauchy on X if given any € > 0, there
exists N = N(e) € N s.t. n > N implies d(fn(x), fm(z)) < e Vr € X.

Proposition 4.12. Suppose f, : X — Y are continuous and f, — f uni-
formly on X. Then, f : X — Y 1is continuous.

Proposition 4.13 (Failure of uniform convergence). Consider a sequence
of functions f, : X — Y and a function f : X — Y such that f, — f
pointwise. Suppose that there ezists € > 0, N > 0, and a sequence (z,,) in X
s.t. d(fu(xy), f(z,)) > € ¥Yn > N. Then, uniform convergence fails.

Proposition 4.14.

1. Suppose f, : X — R is a uniformly Cauchy sequence of functions.
There exists a function f : X — R s.t. f, = f uniformly on X.
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2. If the f, are continuous, so is f.
Proposition 4.15.

1. Suppose f, : X — Y is a uniformly Cauchy sequence of functions.
There exists a function f: X =Y s.t. f, = f uniformly on X.

2. If the f, are continuous, so is f.
Proposition 4.16 (Interchanging limit processes).

1. Suppose f, : X — Y are continuous on X and f, — f uniformly on
X. Then, f: X =Y is continuous.

lim f(z) = lim lim f,(x) = lim lim f,(z) = lim f,(a) = f(a). (20)

T—a r—a n—o0 n—oo rT—a n—o0

2. Suppose f, : [a,b] — R are continuous on |a,b] and f, — f uniformly
on la,b]. Then, f is continuous on [a,b] and

iy h) dt - / £(0) (21)

3. Let I C R be an open interval and suppose f, : I — R are C! functions.
Let f,g: I — R and suppose that given any compact subset K C I, the
sequences f, and f! converge uniformly on K to f and g respectively.

Then, f is C' and f' = g, i.e.,
/
(lim fn> — lim f'. (22)

4.5 Tricks and examples

Proposition 4.17. Consider a sequence of functions f, : X — Y and a
function f: X =Y s.t. f, — f pointwise. Then uniform convergence fails
if and only if there exists an € > 0, a sequence (x,) in X, and a subsequence

(fni) of (fn) st
d(fo(2k), f21)) = € V. (23)

Proof.
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1. [=>] Since uniform convergence fails, we know Je > 0 s.t. VN €
N 3dn > N st. Jz € X s.t. |fu(x) — f(x)| > €. For convenience, let
no = 0. Having chosen nj_1, we can pick ny > nx_1 + 1 s.t. Jxy s.t.

| for (1) — f(28)] > €

2. [«=] For the sake of contradiction, assume f,, — f uniformly and so
does f,,. In particular, for the given ¢ > 0, we know 3N > N s.t.
Vn > N, d(f,, (z) — f(z)) < € Va, which is contradiction.

]

Remark 4.18. The metric space X = C'([a,b],R) equipped with the norm

[fI = sup [f(z)|+ sup [f'(z)] (24)

z€[a,b| z€[a,b]
18 complete.

Proof. Suppose f, € X is Cauchy. Then Ve > 0 3N € N s.t. Vm,n > N, we
have

sup |fm(z) = ful@)| + sup [f(z) = fr(z)] <e (25)

z€|a,b| z€[a,b]

Hence, f, and f/ are both uniformly Cauchy on [a,b] and thus converges
uniformly on [a,b], ie., f, — f and f/ — ¢ uniformly. Notice that by
uniform convergence, we know g = f’.

Fix € > 0. Since f, — f uniformly, we know 4N; € N s.t. Vn > N,

sup [fule) — f(2)] < /2. (26)

z€[a,b]

Since f — f’ uniformly, we know 3N, € N s.t. Vn > N,

sup | f,,(z) — f'(z)| < €/2. (27)

z€[a,b]

Hence, pick N = max{Ny, Ny}, in which case, ¥n > N, we have

sup |fu(z) = f(2)] + sup [fi(z) — f'(2)] <e/2+¢€/2=€  (28)

x€[a,b] z€a,b]

]
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5 Differentiability

5.1 Differentiability

Definition 5.1. Let f : R* — R. We say f is differentiable at a € R™ if
dc € R™ s.t. the function r defined by

fla+h) = f(a)+c-h+r(h) (29)
satisfies )
. r(h)

Definition 5.2. Let F = (f1, -+, fm) : R" = R™. We say F is differentiable
at a € R" if 3C € M, «pn s.t. the function defined by

F(la+h)=F(a)+C-h+r(h) (31)
satisfies )
. r(h

Theorem 5.3 (“A simple criterion”). Let O C R" and f : O — R. Suppose
f € CHO,R). Then, f is differentiable at any x € O.

5.2 Chain rule

Theorem 5.4 (Chain rule). Let F' : R® — R™ be differentiable at x € R".
Let G : R™ — R* be differentiable at 2 = F(z). Then H=Go F : R* — R*
is differentiable at x and

DH(x) = DG(F(z)) - DF(x) (33)
where
V fi(a)
pF@)=| : | (34)
V fm(a)

5.3 Clairaut’s theorem
Theorem 5.5 (Clairaut’s theorem). Let F': R® — R™ be C?. Then
0;0pF (x) = 040, F(x) V.
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5.4 Tricks and examples
Lemma 5.6 (“FTC lemma”). Let f : (a,b) — R be C'. Then,

o+ =0 = ([ £ ) (35)

Compare the lemma above to mean value theorem.

Theorem 5.7 (Mean value theorem). Let f : [a,b] — R be continuous on
la,b] and differentiable on (a,b). Then, Ic between x and x + y s.t.

fla+y) = fl@) = f(cy. (36)
Example 5.8 (Standard pathological example). Let f : R* — R be given by
s (2,y) # (0,0)
_ T+y
e = {0 (2,9) = (0,0) 0

Notice that f,(0,0) = f,(0,0) = 0 but f is not continuous or differentiable
at (0,0).

6 Taylor’s theorem

6.1 Multi-index notation
Let = (21, -+ ,x,) € R™.
Definition 6.1. Multi-index
1. A multi-index is an n-tuple a = (o, - -+ , o) where o € Ny.
2. Define z® := x7'-x5? - - - 22, In addition, define x? =1 evenifzr; =0.
3. The order of o is |a| == a1 + -+ - + .
4. Define a! := ailag!- - -, !. In addition, define 0! := 1.

Remark 6.2 (Polynomials). Any polynomial p(x) of order < m can be writ-
ten as
p(z) = Z cox®  where ¢, constant. (38)

laf<m

14



Definition 6.3. Let o = (aq, -+, @) be a multi-index and let
0= (Opys - ,0z,) = (01, ,0n). (39)
We define
0 =0"o---00m. (40)

6.2 Multinomial theorem

Theorem 6.4 (Binomial theorem).
m! o
(x1 4+ 29)" = Z —— "l (41)
— J! !

Theorem 6.5 (Multinomial theorem).

(@1 + -+ 2)" Zﬁ, . (42)

6.3 Taylor’s theorem

Theorem 6.6 (Taylor’s theorem). Let m € N. Let f : R — R and suppose
feCm™ Leta,x € R. Then,

m (m+1)
Z x—ak%—%(x—a)mﬂ, (43)

k=0

where £ is strictly between a, x.

Theorem 6.7 (Taylor’s theorem). Let m € N. Let f : R — R and suppose
feC™ Leta,x € R*. Then,

fy= 3 PTG g 52 PIOG e

la|<m ' la|=m+1

where £ is strictly between a, x, i.e., & lies on the open segment joining a, x.
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7 Limit superior and limit inferior

Definition 7.1. Let (a,) be any sequence in R, we define

limsupa, = lim sup a,, (45)
n—00 m—00 p>m

liminfa, = lim inf a,. (46)
n—00 m—o0 n>m

Proposition 7.2. Let (a,) and (b,) be sequences in R, then
1. limsup(—a,) = liminf a,,
lim sup(ca, ) = climsupa,, for any ¢ >0,

lim sup(a, + b,) < limsup a,, + lim sup b,,,

lim inf a,, < lim sup a,, where equality holds if and only if (a,,) converges,
in which case liminf a,, = lim sup a,, = lim a,,, and

5. if (by) is a subsequence of (ay,), then

liminf a,, < liminfb, < limsupb, < limsupa,. (47)

8 Contraction mapping theorem

Theorem 8.1 (Contraction mapping theorem). Let (X,d) be a nonempty,
complete metric space. Suppose f : X — X has the following property: 3k
with 0 <k <1 s.t.

d(f(z), f(y)) < kd(z,y) Va,y e X. (48)

Then, f has a unique fixed point in X.

9 Inverse and implicit function theorems

9.1 Inverse function theorem

Theorem 9.1 (Inverse function theorem). Suppose f : R" — R"™ is C' on
R". Let a € R™. We have the following.
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1. If f'(a) € Myxpn is invertible, then 3 open setsU > a and V' > f(a) =10
s.t. f:U =V is a Ct-diffeomorphism, i.e., f is one-to-one, onto, and
both f and f~! are C*.

2. Letg= f~1:V — U then g is C' and
J(f(@) =[f(@)] Ve el (49)

Theorem 9.2 (Inverse function theorem). Let V' be a finitely dimensional
real normed vector space. Suppose f:V —V isCt onV. Leta € V.

Then if f'(a) € L(V,V) is invertible, then 3 open sets Uy > a and Uy >
fla) =0 s.t. f:U, — Uy is a Ct-diffeomorphism.

9.2 Implicit Function Theorem

Theorem 9.3 (Implicit function theorem). Let f : R"™™ — R"™ be C'. In
addition, we write f(z,y) with x € R",y € R™. Suppose f(a,b) = 0 and
assume D, f(a,b) =: A, is invertible. Then

1. 3 open sets U > (a,b) in R™™™ and open sets W 2 b in R™ and C*
function g : W — R" s.t.

{(x,y) €eU: f(z,y) =0} ={(9(y),y) :y € W} (50)

2. If A, = D,f(a,b), then ¢'(b) = —A;'A,.

9.3 Lagrange multipliers

Proposition 9.4 (Lagrange multiplier). Let f,g € C*(R3R). Let S = {z €
R3 : g(x) = 0}. Let a € S and assume Vg(a) # 0. If f|s has a local
maximum at a € S, then I\ € R s.t.

Vf(a) = Ag(a). (51)

10 Partition of unity

Proposition 10.1 (Partition of unity). Let K C R"™ be compact and suppose
{U;,7=1,--- N} is an open cover of K. A C* partition of unity on K
subordinate to this covering is a collection {p;,j =1,--- , N} of C* functions
p; : R" — R with the properties
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1. supp p; C u; for every j, and

2. Z?f:lpjzl on K.

11 Basics of measure theory

11.1 o—algebra

Definition 11.1 (0—algebra). Let X be a nonempty set. We say A C
P(X) is c—algebra on X if A is closed under countable unions and taking
complements, 1i.e.,

1. if By, By, -+ € A, then U2, Ej € A, and
2. if E €A, then E°:= X\ F € A.
Remark 11.2. If Ey, By, - -+ € A, then (N2, E; € A.

Corollary 11.3. If £ C P(X). Then there is a unique smallest o—algebra
that contains £, o(E). Call it the o—algebra generated by £, where

(&) = ﬂ{a — algebra that contain E}. (52)

Definition 11.4 (Borel o—algebra). We define the Borel c—algebra Bx on
X to be the o—algebra generated by the set of all open sets in X, i.e.,

Bx = o({open sets in X}). (53)

11.2 Measure
Let X be a nonempty set. Let M be a c—algebra on X.

Definition 11.5 (Measure). A measure p on (X, M) is a function p: M —
0, 00] s.t.

1. pu(@) =0, and

2. (Countable additivity) if E; € M, j =1,2,--- disjoint, then
Iz (U Ej) = u(E)). (54)
j=1 J=1
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We call (X, M, ) a measure space.
Proposition 11.6 (Properties of measures).
1. (Monotonocity). Let E;F € M. Then E C F — p(FE) < u(F).

2. (Subadditivity). Let Ey, Es,--- € M not necessarily disjoint, then
p (U Ej) <> ulE). (55)
j=1 j=1
3. (Continuity from below). Let Ey C Ey C --- where E; € M. Then,
u <U Ej) = lim u(E;). (56)

4. (Continuity from above). Let Ey D Ey D --- where E; € M. Assume
w(Ey) < 0o. Then,

J—00

[ (ﬂ Ej) = lim p(Ej). (57)
j=1
Definition 11.7 (Outer measure). An outer measure on set X is a function
e P(X) — [0, 00] s.t.
1. p*(0) =0,
2. (Monotonocity) A C B — u*(A) < u*(B), and
3. (Subadditivity) if A; € P(X), then

I (U Aj) < ZM*(AJ')- (58)

Definition 11.8 (pu*—measurable). Let pu* be an outer measure on X. Let
AC X. We say A is p*—measurable if for every subset E C X, we have

pr(E) = p(ENA) + p* (BN A°). (59)
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Theorem 11.9 (Caratheodory I). Let u* be an outer measure on X. The
collection M C P(X) of u*—measurable sets is a o—algebra and p*|pm =: p
is a measure of X and (X, M, 1) is a measure space.

Definition 11.10 (Metric outer measure). An outer measure pu* on X is a
metric outer measure if whenever Sy, S, C X and

d(Sl, 52) = inf{d(xl,xg) ;€ S@} > 0, (60)

we have
pr(S1U S2) = p*(S1) + p* (Sa). (61)

Theorem 11.11 (Caratheodory II). If u* is a metric outer measure on X,
then every closed subset in X s pu*—measurable.

11.3 Lebesgue measure
Definition 11.12 (Lebesgue outer measure). Let
E = {bounded open intervals in R"}. (62)
An open interval I € £ has the form
I={zeR":a; <z <ba;,b € R"}. (63)
Let X : € — [0, 00] be given by

n

M) =T (b = ay). (64)

J=1

If S C R, let

m*(S) = inf{i/\(fj) 1S C [j[j,]jeé’}. (65)

j=1
Definition 11.13 (Lebesgue measurable sets). We define

L, = {m"* — measurable sets on R"}. (66)
By Caratheodory I, we define m := m*|., to be the Lebesque measure of R™.
Theorem 11.14 (Regularities of Lebesgue measure). Let B € L,,, then

m(B) = sup{m(K) : K C B, K compact} (67)
=inf{m(U) : B C U,U open}. (68)
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11.4 Complete measure space
Definition 11.15. A measure p on (X, M) is complete if

A€M u(A)=0,SC A = SeMuS)=0. (69)

Proposition 11.16. Suppose i is a measure on (X, F) that is not complete.
Then,

1. F={EUS:E€F,SCFecF, ulF)=0}is a o—algebra, and

2. p(EUS) = u(E) is complete.

12 The Lebesgue integral

12.1 Lebesgue integration

Definition 12.1 (Measurable functions). Let M, N be o—algebras on sets
X,Y, respectively. Then, f : (X,M) — (Y,N) is (M, N)—measurable if
7Y N) c M.

Remark 12.2.
1 If f: (X, M) — (R,B(R)), then f is measurable if f~*(B(R)) C M.

2. To check f is measurable, it is enough to check f~'(a,00) € M since
(a,00) generate B(R).

Definition 12.3 (Simple functions). A function f : X — R is simple if it
assumes only finitely many distinct values.

Remark 12.4.

1. If c1,--- ,c, are the distinct values, we can write
f= ZCjXAj where Aj ={z € X : f(z) =¢;}. (70)
j=1

We call this the “canonical” or “standard” representation of f.

2. The set X =J;_, A; is a disjoint union.
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3. Let f: (X, M) — R be simple. Then, [ is measurable if and only if
each A; € M.

Definition 12.5. Let (X, M, u) be a measure space. Let ST(X, M, ) be
the set of non-negative measurable simple functions on (X, M).

1. 1If

¢= cixa, €57, (71)
j=1
define

/ ¢ du=">_ciu(4). (72)

X et
2. If A e M, define

[ odu= [ oxaan (73)

A X

Theorem 12.6 (Ladder theorem). Let f : (X, M) — (EJF,B(@)) be mea-
surable and non-negative. Then, there exists simple functions ¢, € St s.t.
0 < ¢, N f pointwise on X.

Remark 12.7.
1. On any B € M where f is bounded, ¢, / f uniformly on B.
2. Let f: (X, M) = R. Write f = f+ — f~. Set
on(1) = & (x) — ¢, (x) where ¢; /7 f*. (74)
Notice that ¢, — f pointwise on X.
3. Let f: (X, M) — C where f = g+ ih. Apply above to g, h, we get

U, + 1, — f pointwise on X. (75)

Deﬁnitigl 12.8. Let M™ be the set of non-negative measurable functions
f: X —=>Ron(X,M,pu). Let f € M*. Define

/ f du =sup {/(b du 0 < ¢ < f, where ¢ is simple and measumble} .
X
(76)

22



Definition 12.9.

1. Let f: X — R be measurable. Write f = f* — f~ where f* € M*.

Define
[ran=[r du- [ 1 an (77)

provided at least one of [ f* is finite.
2. If both [ f* < oo, we say [ is integrable and write f € L'(X, M, p).

Remark 12.10. Since
<=1 +7, (78)
we see that f is integrable if and only if [|f| du < co.

Definition 12.11.

1. Let f : X — C be measurable. Write f = Re f +Im f. Define
/fd,u:/Refd,u—Fi/Imfd,u. (79)

2. If Re f,Im f € L', we say [ is integrable and write f € LY(X, M, ).
Remark 12.12. Since
[fI < [Re f[+ |Im f| < 2[f], (80)

we see that f is integrable if and only if [|f| du < co.

12.2 Convergence theorems

Theorem 12.13 (Monotone convergence theorem). Let f, < foi1,[n €
M Vn. Let f be the pointwise limit of f,. Then,

li_>m fr du = /f dpu. (81)
Lemma 12.14 (Fatou’s lemma). Let f, € Mt Vn. Then,
/ (hmmf fn> dy < lim inf / Fu dp. (82)
n—oo n—oo
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Theorem 12.15 (Dominated convergence theorem). Let f, € LY (X, M, u),
fn: X =R, Let f: X — R and assume f, — [ pointwise Vo € X. Assume
there exists g € LY X, M, i) s.t. |ful < g ¥n on X. Then, f € LY(X, M, )
and

tim [ f, dp = / f dp. (83)

Remark 12.16. In the monotone convergence theorem, Fatou’s lemma, and
the dominated convergence theorem, the hypothesis that f, — f Vo € X can
be weakened to f, — f a.e. on X.

12.3 LP spaces
Definition 12.17 (LP). For p € [1,00), we define

LP(X, M, p) = {f o f measumble,/ lfIP dp < oo}. (84)
X
Definition 12.18 (LP). For p € [1,00), we define LP(X, M, ) to be the
equivalence classes of elements of LP where f ~ g <= f =g a.e.

Definition 12.19 (Norm on L?). We define the norm on LP by

e = ([ 1ov an) v (35)

where f is any representative of [f].

Definition 12.20 (£>). We define L>*(X, M, 1) to be the set of measurable
functions f s.t. AM s.t. |f| < M a.e. on X.

Definition 12.21 (L>°). We define LP(X, M, i) to be the equivalence classes
of elements of L.

Definition 12.22 (Norm on L*). We define the norm on L* by

| f|Lee = inf {sg{p lgl:g € [f]} (86)
=inf{M : p{x: f(z) > M} =0}. (87)
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Proposition 12.23 (Minkowski’s inequality). Let p € [1,00]|. For any mea-
surable functions v,w, we have

|U + U)‘Lp S |U|LP + |’LU|LP. (88)

Proposition 12.24 (Holder’s inequality). Let p € [1,00]. Define ¢ by 1/p+
1/q = 1. For any measurable functions f,g, we have

|faler < | fleelglrae. (89)

Theorem 12.25. For p € [1,00], the normed vector space LP(X, M, ) is
complete.

Corollary 12.26. For p € [1,00), if gx — g in LP(X, M, ), then 3 subse-
quence that converges pointwise ji—a.e. to g.

Proposition 12.27. For p € [1,00), C.(R") is dense in LP(R").

12.4 Tonelli’s and Fubini’s theorems

Theorem 12.28 (Tonelli’s theorem). We write R* = RY xR with k+1 = n.

Let (z,y) € R". Given f(z,y), we set f.(y) = fY(z) = f(x,y).
Let f > 0 be Borel measurable on R™. Then, the functions

oa) = [ fulw) dmly (90)
hy) = [ (@) dmo) (91)

are Borel mesurable and
[ ramea) = [ o@in@) = [ ban). @)

Theorem 12.29 (Fubini’s theorem). Let f be Borel measurable on R™ and
[1f] dm < co. Then, f, is integrable for a.e. x and f¥ is integrable for a.e.
Yy, and

[ #dm= [ s.0) amtg)im(z) (93)
— [[ 1w dm(ayim(y). (94)
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Proposition 12.30. Suppose f is Lebesgue measurable on R™. Then, there
exists a Borel measurable function g s.t. f = g a.e. with respect to the
Lebesgue measure m.

Remark 12.31 (Fubini’s theorem for Lebesgue measurable functions). Let
f € LY(R",m). We can choose Borel measurable function g s.t. f = g
m—a.e. Apply Fubini’s theorem to g and notice that

[1stdm= [1slam and [ fdm= [gam (95)

12.5 Change of variable theorem

Theorem 12.32 (Change of variable). Let U,V be open in R™ and let
¢: U — V be a C! diffeomorphism. Then, for any non-negative Lebesque
measurable function f,, f on V, we have

/Vf dm = /U(f 0 9)|Jo| dm, (96)

where

In particular,
m(@(A)) = [ |Jo] dm, (98)

where A C U is any Lebesgue measurable set.

13 Normed vector spaces

Definition 13.1 (Norm). A norm on (V,F) is a function || -| : V — R with
the following properties. For any v,w € W,a € F,

1. ||v|| = 0 and ||v]| =0 only for v =0,
2. Nlawll = [alllvll;
3. v+ wl < ol + [Jwl].

A wector space with a normed defined on it, (V.|| - ||), is called a normed
vector space.
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Definition 13.2 (Equivalent norms). Let (V,F) be a vector space. Two
norms on V., || - |l1, || - ||l2 are said to be equivalent if there exist positive
constants C1, Cy s.t.

Cillvlly < flvfl2 < Coflolly Vo e V. (99)

Proposition 13.3. If (V,R) is a finite dimensional vector space of dimension
n, then there exists a linear map i : R — V s.t. if || - ||v is any norm on V,
then i : (R™ || -||) = (V,|| - |lv) is a homeomorphism where

cilz] < |li(x)||v < caolz|  for some positive constants ¢y, cs. (100)

14 Compactness in function spaces

Definition 14.1 (Equicontinuity). Let (X,d) be a metric space. Let F be a
family of functions f: X — R. We say F is equicontinuous on X if given
any € > 0 there exists 6 > 0 s.t. if d(p,q) < 0, then

1f(p) = fl@)] <e VfeF. (101)

Theorem 14.2 (Arzela-Ascoli theorem). Let (X,d) be a compact metric
space. Let K C C(X,R) be closed, bounded, and equicontinuous, then K is
compact.

Definition 14.3 (Pointwise boundedness). We say F C C(X,R) is point-
wise bounded if given any p € X, there exists M, s.t.

fp) <M, VfeF (102)
Corollary 14.4. Let (X,d) be a compact metric space.

1. If F € C(X,R) is bounded and equicontinuous. Then, F is compact
in C(X,R).

2. If F ¢ C(X,R) is pointwise bounded and continuous, then F is com-
pact in C(X,R).
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15 Density and approximation in function spaces

Proposition 15.1 (Differentiation under the integral sign).

1. Let (X, M, u) be a measure space. Suppose f : [a,bl; x X — C where
—00 < a<b<ooand f(t,-) is integrable for t € [a,b]. Let

F(t) = [ f(t.0) duta), (103)

X

Suppose O, f(t,x) exists Vt,x and suppose g € L (X, M, ) s.t.
0uf(t,2)| < g(x) Vi, z. (104)

Then, F' s differentiable and
Pt = [ ot du(o) (105)
X

2. If Ouf (-, x) is continuous for each x, then F' is continuous.

Definition 15.2 (Convolution). Let f € C(R™,R) and g € C.(R™,R). Then,
the convolution of f and g, f * g, is given by

(f*g)(x) = - flx—y)gly) dy = . fWg(z —y) dy. (106)

Proposition 15.3. Let f € C(R",R). Let g € C*(R",R) where k > 0.
Then,

1. supp f * g Csupp f +suppyg,
2. fxge€ CHR™R) and for |a| < k, we have

9*(f*g) = f=(9%), (107)
3. if f € C*(R™ R), then

O%(fxg) = (0°f)xg=f*(0%). (108)
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15.1 Approximate identities

Definition 15.4 (Approximate identities). Take g € C°(R™ R) satisfying
the following properties:

1. g >0,

2. suppg C B(0,1), and

8. Jong(x) do =1

We say the sequence of functions (gi) is an approximate identity where g is
given by

Remark 15.5. Notice that gi. satisfy the following properties:
1. gx 20,
2. supp gr C W, and
8. Jon gr(z) do = 1.

Proposition 15.6. Form >0, let f € C™(R™,R). Let (gx) be an approzi-
mate identity. Define fr, € C*°(R",R) by

fe(x) = (f * g&) (). (110)

Then, for any compact set K C R™ and any multiindex o with |o| < m, we
have 0% fr, — 0“f uniformly on K as k — oo.

15.2 Approximation theorems

Theorem 15.7 (Weierstrass approximation theorem). Let f € C([a,b],R).
Then, there exists a sequence of polynomials (p,) s.t. p, — [ uniformly
on [a,b] as n — oo, i.e., the set of all polynomials on [a,b] is dense in

C([a,b],R).

Definition 15.8 (Algebra). An algebra of real-valued (resp. complez-valued)
functions on a set X is a set of functions that is closed under addition,
multiplication, and scalar multiplication by o € R (resp. a € C).
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Definition 15.9 (Self-adjoint). An algebra of function f: X — C where X
is a compact metric space is said to be self-adjoint if f € A —= f € A.

Theorem 15.10 (Stone-Weierstrass theorem (real version)). Let X be a
compact metric space. Let A C C(X,R) be a sub-algebra. Suppose 1 € A
and A separates points of X, i.e., if p,q € X,p # q, then 3h,, € A s.t.
hpy(D) # hpy(q). Then, A is dense in C(X,R).

Theorem 15.11 (Stone-Weierstrass theorem (complex version)). Let (X, d)
be a compact metric space. Let A C C(X,C) be a self-adjoint sub-algebra.
Suppose 1 € A and A separates points of X, then A is dense in C(X,C).

Definition 15.12 (Trigonometric polynomials). Define the set of all trigono-
metric polynomials T'P to be

TP=S Y ae™ N=01,-,a,€Cp. (111)

k|<N
Proposition 15.13. Consider the set of periodic functions
Cp(10,27],C) = {f € C([0, 2], C), f(0) = f(2m)}.

Then the set of all trignometric polynomials TP is dense in Cy([0,27], C).

16 Existence and uniqueness for systems of
ODEs

Consider the following IVP:

% = F(t,y),y(to) = vo. (112)

Theorem 16.1 (Local existence). Let Q be an open subset of R™ and let
yo € Q. Let I C R be an open interval containing ty. Suppose F : I x 1, —

R™ is continuous and for any compact interval I. C I and compact K C €2
3L > 0 s.t.

|[F'(t,y1) — F(t,y2)| < Llyn — | VE€ Il and y1,y, € K. (113)

Then, IVP has a C' solution on some open interval containing t.
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Theorem 16.2 (Uniqueness). Let Q, 1, F as above. Let I' C I be an open
subinterval containing ty on which C solutions y and z of IVP are given.
Theny =z on I'.

Proposition 16.3 (Uniform local existence). Let €, I, F' as above. Then, for
any fixed compact interval 1. C I and fixed compact set K C 2, 3T > 0 s.t.
for eachty € 1., yo € K, a unique C* solution of IVP exists on [to—T,to+T).

Remark 16.4. If F € C'(R x R"™), then F satisfies uniform local existence
when I is any bounded open interval and 2 C R™ is any conver, bounded,
open set.

Proposition 16.5 (Criterion for global existence). Let Q, I, F as above.
Suppose that if J C I is any bounded open subinterval containing to on which
a C1 solution y exists, there exists a compact set K C Q s.t. y(t) € KVt € J.
Then, y extends uniquely to a C' solution on all of I.

Lemma 16.6 (Gronwall’s lemma). Let I = [a,b] and suppose a, f € C(I,R).
Assume u € CY(I,R) satisfies

u'(t) < alt)u(t)+ B(t) YVt eI and u(a) = up. (114)

Then,

u(t) < ugexp (/atoz(r) dr) +/at exp (/Sta(r) dr) B(s)ds Vtel. (115)

Proposition 16.7 (Linear energy estimate). Consider a C' solution to the

VP

W — A+ B0).50) = (116)

on an interval I 3 0. Assume A € C(I,M(n,R)) and B € C(I,R"). If
|A(t)|| < K Vt e 1, thenVt € I,t >0, y(t) satisfies

t
|y(t)‘2 < 6(2K+1)t|y0‘2+/ €(2K+1)(tfs)|B(S)‘2d8 (117>
0

The same formula holds for t € I,t < 0, but with B(s) replaced by B(—s)
and t replaced by |t| on the right.

Corollary 16.8. If y; and y, are C' solutions on I, then y, = ys.
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17 Introduction to Complex Analysis

17.1 Complex numbers

Definition 17.1. The field of complex numbers C is a set of ordered pairs
(a,b) where a,b € R with operations of addition and multiplication defined

by

(a,b) + (¢,d) = (a+ ¢, b+ d), (118)
(a,b) - (¢,d) = (ac — bd, ad + be). (119)
Remark 17.2. Define i = (0,1). In addition, if we write (a,0) as a, then
we have
(a,b) = (a,0) + (b,0)(0,1) = a + ib. (120)
Definition 17.3 (Complex conjugate). The complex conjugate of z is given
by
z=a—ib. (121)
Definition 17.4 (Norm on C). Define
12| = |(a,b)| = Va2 + 12 = V2% (122)

17.2 Functions on C
Consider f : C — C. We write

f(2) = u(z) +iv(z) (123)
where u,v : C — R.

Definition 17.5 (Analytic function). Let Q C C be open. Let f:Q — C be
Cl, ie., Re f,Im f are C'. We say f is analytic (or holomorphic) on Q if

_flz+h) = f(2)
i h (124)

ezists for all z € Q. If so, we write f € H().
Remark 17.6. If f € H(Q2), we write

£'(2) = lim =+ h}z — f2) , (125)

h—0

and we say f is complex-differentiable at z.
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Theorem 17.7 (Cauchy-Riemann equations). Let f : Q — C be C'. Then
f = u+iv is analytic on Q if and only if f satisfy the Cauchy-Riemann
equations on €1, i.e.,

1
Je = ;fy, (126)
or, equivalently,
(U, v2) = (vy, —uy), (127)
or, equivalently,
Uy = Uy (128)
Uy = —Vy. (129)

Remark 17.8. Let [ be as above. Then, we have ' = f, = %fy on Q.

Theorem 17.9 (Cauchy’s theorem). Let 2 be a bounded, connected open set
in C with a C* boundary OS2, oriented positively. If f € CY(Q, C) is analytic
i ), then

f(z) dz=0. (130)
o0

Theorem 17.10 (Cauchy integral formula). Let f be as above. If a € €,
then

fla) = —— G) 4. (131)

21 Jon 2 —a

Corollary 17.11 (Smoothness). Let f,§ be as above. If a € Q, then, for
any n € N,

f<n>(a)_”_’/m e QNN (132)

- 2mi z—a)"t
Consequently, f is C*® in Q and f™(a) € H(Q) ¥n € N.

Corollary 17.12 (Cauchy’s estimate). Let f € H(B(a,R)) with R > 0.
Suppose

If(z)| <M Vzé€ Bla,R). (133)
Then, "
)l = — (134)

Theorem 17.13 (Liouville’s theorem). Let f € H(C), i.e., an entire func-
tion, and bounded, i.e., AM > 0 s.t. |f(z)| < M Vz € C. Then f is constant.
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Corollary 17.14 (Mean value property I). Let f € C'(B(a,r),C) be ana-
lytic in B(a,r). Then

fla) = %/0 ' fla+re™) dt = L f(z) ds. (135)

N 2mr 0B(a,r)
Here, ds = |Z/(t)| dt.

Corollary 17.15 (Mean value property II). With the same hypothesis as

above, we have
1

2

floy === [ ) ey (136)

Theorem 17.16 (Maximum modulus theorem). Let Q be bounded, con-
nected, open in C. Suppose f € C(Q,C) and analytic in Q. Then

1. IfaeQ and |f(a)] > |f(2)| Yz € Q, then |f| is constant on Q.

2. As a result, sup,.q | f(2)| = sup,caq | f(2)].

Theorem 17.17 (Power series expansions). Let Q be bounded, connected,
open in C with O oriented positively. Suppose f € CYQ,C) and f is
analytic in Q. Let a € Q and r > 0 s.t. B(a,r) C Q. Then, for z € B(a,r),
we have

1) =3 ez —a)" (137)

n=0

L w
. /a dw. (138)

" 270 Joq (W — a)n !

where

Theorem 17.18 (Morera’s theorem). Let f : Q — C with 2 open. Assume
f is continuous and fT f(2) dz = 0 for every triangular curve T in Q). Then,
f 1s analytic in Q2.
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