MATH 754 Review

Kaibo Tang

February 23, 2025

Contents

1	\mathbf{Fin}	ite dimensional normed spaces, Hilbert spaces, Banach	
	spa	ces, Fréchet spaces, topological vector spaces 2	2
	1.1	Finite dimensional normed vector spaces	3
	1.2	Hilbert spaces	4
		1.2.1 Orthogonality	4
		1.2.2 Riesz Representation theorem	5
		1.2.3 Orthornormal sets in Hilbert spaces	6
		$1.2.4 \ell^2(A) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	6
	1.3		7
	1.4	Topological vector spaces and Fréchet spaces	7
		1.4.1 Seminorms $\ldots \ldots \ldots$	8
0	Б	1.4	•
2	Dua		9
2	Dua 2.1		9 9
2			9
2	2.1	Hahn-Banach theorem and its corollaries	9 0
2	$2.1 \\ 2.2$	Hahn-Banach theorem and its corollaries 9 Reflexive Banach spaces 10	9 0 0
2	2.1 2.2 2.3	Hahn-Banach theorem and its corollaries 9 Reflexive Banach spaces 10 Weak topologies 10	9 0 0 1
2	2.1 2.2 2.3 2.4	Hahn-Banach theorem and its corollaries 9 Reflexive Banach spaces 10 Weak topologies 10 Weak* topologies 10	9 0 0 1
2	2.1 2.2 2.3 2.4	Hahn-Banach theorem and its corollaries9Reflexive Banach spaces10Weak topologies10Weak* topologies11Compactness11	9 0 1 1
2	2.1 2.2 2.3 2.4	Hahn-Banach theorem and its corollaries9Reflexive Banach spaces10Weak topologies10Weak* topologies11Compactness112.5.1Weak* compactness12	9 0 0 1 1 1

1 Finite dimensional normed spaces, Hilbert spaces, Banach spaces, Fréchet spaces, topological vector spaces

Definition 1.1 (Normed vector spaces). A normed vector space $(V, \|\cdot\|)$ is a vector space V equipped with a function $\|\cdot\|: V \to \overline{\mathbb{R}^+} \ s.t.$

- $1. \|v\| = 0 \iff v = 0,$
- 2. if $\alpha \in \mathbb{F}$, then $\|\alpha v\| = |\alpha| \|V\|$, and
- 3. $||v + w|| \le ||v|| + ||w||$.

Definition 1.2 (Quotient spaces). Let V be a normed vector space and W be a closed subspace of V. If $v_1, v_2 \in V$, we say $v_1 \sim v_2$ if $v_1 - v_2 \in W$. For $v \in V$, we write v + W for the equivalence class of V. Define

- 1. $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$, and
- 2. if $\alpha \in \mathbb{C}$, define $\alpha(v_1 + W) = \alpha v_1 + W$.

Then, the quotient space

$$V/W = \{v + W : v \in V\}$$

$$\tag{1}$$

is a vector space.

Definition 1.3 (Norms on quotient spaces). Define a norm on V/W by

$$\|v + W\| = \inf_{w \in W} \|v + w\| = \inf_{w \in W} \|v - w\| = \operatorname{dist}(v, W).$$
(2)

Definition 1.4 (Banach spaces). A Banach space $(V, \|\cdot\|)$ is a normed vector spaces which is complete with respect to the metric $d: V \times V \to \overline{\mathbb{R}^+}$ given by $d(v, w) = \|v - w\|$.

Definition 1.5 (Inner product). An inner product on a vector space H is a map $(\cdot, \cdot) : H \times H \to \mathbb{C}$ s.t.

- 1. $(u_1 + u_2, v) = (u_1, v) + (u_2, v),$
- 2. if $\alpha \in \mathbb{C}$, then $(\alpha u, v) = \alpha(u, v)$,

- 3. $(u, v) = \overline{(v, u)}$, and
- 4. $(u, u) \ge 0$ and $(u, u) = 0 \iff u = 0$.

Definition 1.6 (Hilbert spaces). A Hilbert space $(H, (\cdot, \cdot))$ is a vector space equipped with an inner product $(\cdot, \cdot) : H \times H \to \mathbb{C}$ s.t. H is a Banach space with the norm $\|\cdot\| : H \to \overline{\mathbb{R}^+}$ given by $\|u\| = (u, u)^{1/2}$.

Definition 1.7 (Topological vector spaces). A topological vector space (V, τ) is a vector space equipped with a topology τ s.t. addition $+: V \times V \to V$ and scalar multiplication $\cdot: \mathbb{F} \times V \to V$ are continuous.

Definition 1.8 (Neighborhood). A neighborhood of $a \in V$ is an open set that contains a.

Definition 1.9 (Local base). A collection \mathcal{B} of neighborhoods of 0 is a local base at 0 if every neighborhood of 0 contains an element of \mathcal{B} .

Definition 1.10 (Locally convex topological vector spaces). A locally convex topological vector space V is a topological vector space that has a local base at 0 consisting of convex sets.

Definition 1.11 (Fréchet spaces). A Fréchet space is a locally convex topological vector space whose topology is defined by a complete invariant metric d, i.e., d(u + w, v + w) = d(u, v).

1.1 Finite dimensional normed vector spaces

Definition 1.12 (Equivalent norms). Norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on vector space V are equivalent if there exists constants a, b > 0 s.t.

$$a\|v\|_{1} \le \|v\|_{2} \le b\|v\|_{1}.$$
(3)

Remark 1.13. Equivalent norms determine the same open sets.

Definition 1.14 (Linear isometry). Let B_1, B_2 be normed vector spaces. A map $i : (B_1, N_1) \to (B_2, N_2)$ is a linear isometry if i is linear, bijective, and $N_2(i(b)) = N_1(b)$.

Proposition 1.15 (Equivalence of norms). Let (X, N) be a normed vector space s.t. dim $X = n \in \mathbb{N}$.

- 1. There exists a norm \tilde{N} on \mathbb{C}^n and a linear isometry $i : (\mathbb{C}^n, \tilde{N}) \to (X, N)$.
- 2. Any two norms on (X, N) are equivalent.

Proposition 1.16. Let V be a finite dimensional vector space. Then $K \subset V$ is compact if and only if K is closed and bounded.

Corollary 1.17. The norm closed unit ball $\{v \in V : ||v|| \le 1\}$ in any finite dimensional normed vector space is compact.

Theorem 1.18. Let V be an infinite dimensional normed-vector space. Then, the norm closed unit ball $\{v \in V : ||v|| \le 1\}$ is not compact.

1.2 Hilbert spaces

Proposition 1.19 (Cauchy-Schwarz). Let $(H, (\cdot, \cdot))$ be a Hilbert space. Then,

$$|(u,v)| \le ||u|| ||v||. \tag{4}$$

Proposition 1.20 (Parallelogram law). Let H be a Hilbert space. Then,

$$||u+v||^{2} + ||u-v||^{2} = 2||u||^{2} + 2||v||^{2}.$$
(5)

1.2.1 Orthogonality

Definition 1.21. If $u, v \in H$, we say u is orthogonal to v and write $u \perp v$ if (u, v) = 0.

Definition 1.22 (Convex sets). Let V be a vector space. A set $K \subset V$ is convex if

$$tx + (1-t)y \in K \quad \forall x, y \in K, t \in [0,1].$$
 (6)

Proposition 1.23. Let H be a Hilbert space, let $K \subset H$ be closed and convex and let $x \in H$. Then, there exists a unique $z \in K$ s.t.

$$||x - z|| = \operatorname{dist}(x, K) = \inf_{y \in K} ||x - y|| = d.$$
 (7)

Notation 1.24.

1. Let $x \in H$. Let $K \subset H$ be a closed subspace. Let $P_K x$ be the point in K that is closest to x. We can write

$$x = P_K x + (I - P_K)x.$$
(8)

2. Write $K^{\perp} = \{ u \in H : (u, v) = 0 \ \forall v \in K \}.$

Proposition 1.25. $x - P_K x \in K^{\perp}$.

Proposition 1.26 (Orthogonal decomposition of H). Let $K \subset H$ be a closed subspace, then any $x \in H$ can be written uniquely as

$$x = x_1 + x_2 \quad \text{where } x_1 \in K, x_2 \in K^{\perp}.$$

$$\tag{9}$$

In fact, we have

$$x_1 = P_K x, x_2 = (I - P_K) x.$$
(10)

We write $H = K \oplus K^{\perp}$.

Definition 1.27 (Projections). Let X be a vector space. A linear map $E : X \to X$ with $E^2 = E$ is called a projection.

Proposition 1.28. Let $E : X \to X$ be a projection. Then, we can write $X = M \oplus N$ where

$$M = \{x \in X : Ex = x\}, N = \{x \in X : Ex = 0\}.$$
(11)

Proposition 1.29. $P_{K^{\perp}} = I - P_K$.

Proposition 1.30. Both P_K and $P_{K^{\perp}}$ are linear (and are thus projections).

Definition 1.31 (Orthogonal projection). We say $P_K : H \to K$ is the orthogonal projection of H onto K.

1.2.2 Riesz Representation theorem

Theorem 1.32. Riesz Representation theorem Let $\varphi : H \to \mathbb{C}$ be a continuous, linear functional. Then, there exists a unique $f \in H$ s.t.

$$\varphi(u) = (u, f) \quad \forall u \in H.$$
(12)

Definition 1.33 (Dual space of H). The dual space of H is

$$H' = \{ \varphi : H \to \mathbb{C}, \varphi \text{ is continuous, linear} \}.$$
(13)

Proposition 1.34. Riesz Representation theorem gives a map $T : H' \to H$, i.e., $\varphi \mapsto f$ where T is a antilinear isometry of H' onto H.

1.2.3 Orthornormal sets in Hilbert spaces

Definition 1.35. A set $\{e_{\alpha} : \alpha \in A\} \subset H$ is an orthonormal set if

- 1. $|e_{\alpha}| = 1 \ \forall \alpha \in A, and$
- 2. $(e_{\alpha}, e_{\beta}) = 0$ if $\alpha \neq \beta$.

Theorem 1.36 (Bessel's inequality). Let $\{e_{\alpha} : \alpha \in A\}$ be any orthonormal set in H. Let $x \in H$. Then,

$$\sum_{\alpha \in A} |(x, e_{\alpha})|^2 \le ||x||^2 \tag{14}$$

and

$$\sum_{\alpha \in A} (x, e_{\alpha}) e_{\alpha} \tag{15}$$

converges in H.

Definition 1.37 (Maximal orthonormal sets). An orthonormal set $S \subset H$ is maximal if it is not contained in any larger orthonormal set.

Proposition 1.38. Let H be a Hilbert space. Any orthonormal set \mathcal{O} can be extended to a maximal orthonormal set.

Definition 1.39. A Banach space B is separable if it has a countable dense subset.

Proposition 1.40 (Maximal orthonormal sets in Hilbert spaces). Let H be a separable Hilbert space. Then, we can construct a countable maximal orthonormal set.

1.2.4 $\ell^2(A)$

Definition 1.41. Let A be any set. Define

$$\ell^{2}(A) = \left\{ \varphi : A \to \mathbb{C} : \sum_{\alpha \in A} |\varphi(\alpha)|^{2} < \infty \right\},$$
(16)

where the summation is interpreted as taking supremum over all finite sums.

Theorem 1.42 (Riesz-Fisher theorem). Let $S = \{e_{\alpha} : \alpha \in A\} \subset H$ be an orthonormal set. If $\varphi \in \ell^2(A)$, then there exists $x \in H$ s.t.

$$(x, e_{\alpha}) = \varphi(\alpha) \quad \forall \alpha \in A.$$
(17)

Definition 1.43 (Unitary equivalence). Let H_1, H_2 be Hilbert spaces. A linear map $U : H_1 \to H_2$ is a unitary equivalence if U is bijective and preserves inner product, i.e.,

$$(x,y)_{H_1} = (Ux, Uy)_{H_2}.$$
(18)

Theorem 1.44. Let $S = \{e_{\alpha} : \alpha \in A\} \subset H$ be a maximal orthonormal set. Then $U : H \to \ell^2(A)$ given by $x \mapsto \varphi$ where

$$\varphi(\alpha) = (x, e_{\alpha}) \quad \forall \alpha \in A \tag{19}$$

is a unitary equivalence.

Theorem 1.45 (Parseval's formula). Let $S = \{e_{\alpha} : \alpha \in A\} \subset H$ be a maximal orthonormal set. If $x, y \in H$, then

$$(x,y) = \sum_{\alpha \in A} (x, e_{\alpha}) \overline{(y, e_{\alpha})}.$$
(20)

1.3 Banach spaces

Proposition 1.46. Let V be a Banach space and let $W \subset V$ be a closed subspace. Then, the quotient space V/W is complete.

Proposition 1.47. Let $T: V \to W$ be linear. Then, T is continuous if and only if there exists C > 0 s.t.

$$||Tv|| \le C||v|| \quad \forall v \in V.$$

$$\tag{21}$$

1.4 Topological vector spaces and Fréchet spaces

Proposition 1.48. Let V be a topological vector space, with topologies τ_1, τ_2 and local bases at 0 given by $\mathcal{B}_1, \mathcal{B}_2$, respectively. Then $\tau_1 = \tau_2$ if and only if every element of \mathcal{B}_1 contains an element of \mathcal{B}_2 and vice versa.

1.4.1 Seminorms

Definition 1.49 (Seminorms). A seminorm on a vector space V is a function $p: V \to \overline{\mathbb{R}^+} \ s.t.$

- 1. $p(\alpha v) = |\alpha| p(v) \ \forall \alpha \in \mathbb{C} \ \forall v \in V, and$
- 2. $p(v+w) \le p(v) + p(w) \ \forall v, w \in V.$

Definition 1.50 (Separating family of seminorms). A family \mathcal{F} of seminorms on V is called separating if given any $v \in V$ with $v \neq 0$ there exists $p \in \mathcal{F}$ s.t. $p(v) \neq 0$.

Theorem 1.51 (Description of the topology using seminorms). Let \mathcal{P} be a separating family of seminorms on a vector space V. For $p \in \mathcal{P}$ and $n \in \mathbb{N}$, let

$$V(p,n) = \left\{ x \in V : p(x) < \frac{1}{n} \right\}.$$
(22)

Let \mathcal{B} be the set of all finite intersections of the $V(p_n)$. Let τ be the set of all unions of translates of elements of \mathcal{B} . Then, (V, τ) is a locally convex topological vector space. Furthermore, $p \in \mathcal{P}$ is continuous and \mathcal{B} is a local base at 0.

Theorem 1.52 (Description of the topology using a metric). Let \mathcal{P} be a countable, separating family of seminorms on a vector space V. Define an invariant metric $d: V \times V \to \overline{\mathbb{R}^+}$ by

$$d(u,v) = \sum_{j=1}^{\infty} \frac{2^{-j} p_j(u-v)}{1+p_j(u-v)}.$$
(23)

Proposition 1.53. Let \mathcal{P} be a countable, separating family of seminorms on a vector space V. Let τ_s be the topology determined by the seminorms and let τ_m be the topology determined by the metric. Then, $\tau_s = \tau_m$.

Proposition 1.54. Let (V, τ) be a locally convex topological vector space with τ determined by a separating family of seminorms $\mathcal{P} = \{p_{\alpha} : \alpha \in A\}$. Then,

1. a sequence $v_n \to v$ if and only if it converges in every seminorm, i.e., $p_{\alpha}(v_n - v) \to 0$ for all $\alpha \in A$, and 2. (v_n) is Cauchy if and only if it is Cauchy in every seminorm, i.e., given $\varepsilon > 0$ and $\alpha \in A$, there exists $N \in \mathbb{N}$ s.t. if $m, n \geq N$, then $p_{\alpha}(v_m - v_n) < \varepsilon$.

Proposition 1.55. Let V be a Fréchet space with topology given by $\{p_j\}_{j=1}^{\infty}$. Let $\omega : V \to \mathbb{C}$ be linear. Then, ω is continuous if and only if there exists C, N s.t.

$$|\omega(v)| \le C \sum_{j=1}^{N} p_j(v) \quad \forall v \in V.$$
(24)

2 Duality

2.1 Hahn-Banach theorem and its corollaries

Theorem 2.1 (Hahn-Banach theorem). Let X be a vector space over \mathbb{F} . Let p be a seminorm. Let $M \subset X$ be a subspace. Let $f : M \to \mathbb{F}$ be linear s.t.

$$|f(x)| \le p(x) \ \forall x \in M.$$
(25)

Then, there exists an extension $\tilde{f}: X \to \mathbb{F}$ linear s.t.

$$|\hat{f}(x)| \le p(x) \quad \forall x \in X.$$
(26)

Corollary 2.2. Let X be a normed vector space over \mathbb{C} . Let $x_0 \in X$. Then, there exists $\Lambda \in X'$ s.t.

$$\Lambda x_0 = |x_0| \quad and \quad |\Lambda x| \le |x| \quad \forall x \in X.$$
(27)

Remark 2.3. So, if $X \neq \{0\}$ is a normed vector space, then

- 1. $X' \neq \{0\}$ and
- 2. if $x \in X$ and $f(x) = 0 \ \forall f \in X'$, then x = 0.

Corollary 2.4. Let X be a normed vector space. Let $M \subset X$ be a subspace. Let $x_0 \in X$. Then, $x_0 \in \overline{M}$ if and only if given $f \in X'$ and f = 0 on M, we have $f(x_0) = 0$.

Corollary 2.5. Let X be a normed vector space. Let $M \subset X$ be a subspace. Then, M is dense in X if and only if given $f \in X'$ and f = 0 on M, we have f = 0 on X.

Corollary 2.6. Let X be a normed vector space. If X' is separable, then X is separable.

2.2 Reflexive Banach spaces

Definition 2.7 (J). Let V be a Banach space. There is a natural map $J: V \to V''$ given by

$$Jv(\omega) = \omega(v) \in \mathbb{C} \quad \forall \omega \in V'.$$
(28)

Proposition 2.8. The map $J: V \to J(V) \subset V''$ is an isometry onto J(V).

Definition 2.9 (Reflexive Banach spaces). A Banach space V is reflexive if $J: V \to V''$ is surjective.

2.3 Weak topologies

Definition 2.10 (Subbase). Let (X, τ) be a topological space. Say $\mathcal{B}_s \subset \tau$ is a subbase for τ if the set \mathcal{B} of all finite intersections of the elements of \mathcal{B}_s is a base for τ , i.e., every element of τ is a union of elements of \mathcal{B} .

Theorem 2.11 (Tychonov's theorem). If x_{α} , $\alpha \in A$ are compact Hausdorff, then $\prod_{\alpha \in A} X_{\alpha}$ is compact Hausdorff with respect to the product topology.

Definition 2.12 (Weak topologies on X). Let X be a set. Let \mathcal{F} be a family of maps $f : X \to Y_f$ where Y_f is a topological space. Define a topology τ_w on X to have subbase

$$\mathcal{B}_s = \{ f^{-1}(V) : V \subset Y_f \text{ open, } f \in \mathcal{F} \}.$$
(29)

Call τ_w the weak topology induced by \mathcal{F} or the \mathcal{F} -topology.

Remark 2.13. A local subbase at $0 \in X$ for τ_w is given by the sets

$$\{x \in X : p_{\omega}(x) < \varepsilon, \omega \in X', \varepsilon > 0\} \quad where \ p_{\omega}(x) = |\omega(x)|.$$
(30)

So, the weak topology τ_w on X is a seminorm topology.

Corollary 2.14. $x_n \rightharpoonup 0$ weakly in X if and only if given any $\omega \in X'$, we have $\omega(x) \rightarrow 0$.

Remark 2.15. If $x_n \to 0$ strongly, then $x_n \rightharpoonup 0$ weakly in X.

2.4 Weak* topologies

Definition 2.16 (Weak^{*} topologies on X). Let X be a topological vector space with dual X'. Let \mathcal{F} be the family

$$\mathcal{F} = \{J_x : X' \to \mathbb{C}, x \in X\} \quad where \ J_x(\omega) = \omega(x) \quad \forall \omega \in X'.$$
(31)

The weak^{*} topology on X', τ^* , is the \mathcal{F} -topology on X'.

Remark 2.17. A local subbase at $0 \in X'$ for τ^* is given by the sets

$$(J_x)^{-1}(B(0,\varepsilon)) = \{\omega \in X' : |J_x(\omega)| = |\omega(x)| < \varepsilon\}.$$
(32)

So, the weak* topology τ^* is a seminorm topology.

Corollary 2.18. $\omega_n \to 0$ in τ^* if and only if given any $x \in X$, we have $\omega_n(x) \to 0$.

2.5 Compactness

2.5.1 Weak^{*} compactness

Theorem 2.19 (Banach-Alaoglu). Let X be a Banach space. The norm closed unit ball B in X',

$$B = \{\Lambda \in X' : |\Lambda x| \le 1 \ \forall |x| \le 1\}$$
(33)

is compact in the weak^{*} topology.

2.5.2 Weak* sequential compactness

Corollary 2.20. Let X be a separable Banach space. The norm closed unit ball B in X' is sequentially compact in the weak^{*} topology.

2.5.3 Weak compactness

Proposition 2.21. If X is a reflexive Banach space, then $J : X \to X''$ is a homeomorphism of (X, τ) onto (X'', τ^*) where τ is the weak topology on X and τ^* is the weak* topology on X''.

Corollary 2.22. Let X be a reflexive Banach space. The norm closed unit ball B in X is compact in the weak topology.

2.5.4 Weak sequential compactness

Corollary 2.23. Let X be a separable, reflexive Banach space. The norm closed unit ball B in X is sequentially compact.