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1 Finite dimensional normed spaces, Hilbert
spaces, Banach spaces, Fréchet spaces, topo-
logical vector spaces

Definition 1.1 (Normed vector spaces). A normed vector space (V.|| -|) is
a vector space V' equipped with a function || - || : V — R s.t.

1 v =0 <= v=0,
2. if a € F, then |lav| = |o|||V||, and
3. |lv 4wl < [Joll + [[w].

Definition 1.2 (Quotient spaces). Let V' be a normed vector space and W
be a closed subspace of V. If vi,v9 € V', we say vy ~ vy if vy — vy € W. For
v eV, we write v+ W for the equivalence class of V. Define

1. (v + W)+ (vg+ W) = (v1 +v2) + W, and
2. if a € C, define a(vy + W) = avy + W.
Then, the quotient space
VIW ={v+W:veV} (1)
18 @ vector space.

Definition 1.3 (Norms on quotient spaces). Define a norm on V/W by

lv+ Wil = inf flvt+w|= nfflv—w]=dit(v, V). (2)

Definition 1.4 (Banach spaces). A Banach space (V, ||-||) is a normed vector
spaces which is complete with respect to the metric d : V x V — R* given by
d(v,w) = [jv —wl|.

Definition 1.5 (Inner product). An inner product on a vector space H is a
map (+,-): Hx H— C s.t.

1. (u1 + ug,v) = (u1,v) + (uz,v),

2. if a € C, then (au,v) = a(u,v),
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3. (u,v) = (v,u), and
4. (u,u) >0 and (u,u) =0 <= u=0.

Definition 1.6 (Hilbert spaces). A Hilbert space (H, (-,-)) is a vector space
equipped with an inner product (,-): Hx H— C s.t. H is a Banach space
with the norm || - || : H — R¥ given by ||u|| = (u,u)"?.

Definition 1.7 (Topological vector spaces). A topological vector space (V, 1)
15 a vector space equipped with a topology T s.t. addition + : V xV — V and
scalar multiplication - : F x V' — V' are continuous.

Definition 1.8 (Neighborhood). A neighborhood of a € V is an open set
that contains a.

Definition 1.9 (Local base). A collection B of neighborhoods of 0 is a local
base at 0 if every neighborhood of O contains an element of B.

Definition 1.10 (Locally convex topological vector spaces). A locally convex
topological vector space V' is a topological vector space that has a local base
at 0 consisting of conver sets.

Definition 1.11 (Fréchet spaces). A Fréchet space is a locally convex topo-
logical vector space whose topology is defined by a complete invariant metric
d, i.e., dlu+w,v+w)=d(u,v).

1.1 Finite dimensional normed vector spaces

Definition 1.12 (Equivalent norms). Norms || -||; and || - ||2 on vector space
V' are equivalent if there exists constants a,b > 0 s.t.

allvlly < flvll2 < bl[v]l1 (3)
Remark 1.13. Equivalent norms determine the same open sets.

Definition 1.14 (Linear isometry). Let By, By be normed vector spaces. A
map i : (By, N1) — (Ba, N2) is a linear isometry if i is linear, bijective, and

Ny(i(b)) = Ni(b).

Proposition 1.15 (Equivalence of norms). Let (X, N) be a normed vector
space s.t. dim X =n € N.



1. There exists a norm N on C* and a linear isometry i : (C",N) —
(X,N).

2. Any two norms on (X, N) are equivalent.

Proposition 1.16. Let V' be a finite dimensional vector space. Then K C V
1s compact if and only if K is closed and bounded.

Corollary 1.17. The norm closed unit ball {v € V : ||v|| < 1} in any finite
dimensional normed vector space is compact.

Theorem 1.18. Let V' be an infinite dimensional normed-vector space. Then,
the norm closed unit ball {v € V : |jv]| < 1} is not compact.

1.2 Hilbert spaces

Proposition 1.19 (Cauchy-Schwarz). Let (H, (+,-)) be a Hilbert space. Then,
[(u, 0)| < ulllo]]- (4)

Proposition 1.20 (Parallelogram law). Let H be a Hilbert space. Then,

I+ vl + llu = ol* = 2jul® + 2]]o]|*. ()

1.2.1 Orthogonality

Definition 1.21. If u,v € H, we say u is orthogonal to v and write u L v
if (u,v) =0.

Definition 1.22 (Convex sets). Let V' be a vector space. A set K C V is
convex if
tr+(1—tyye K Vr,ye K,t€[0,1]. (6)

Proposition 1.23. Let H be a Hilbert space, let K C H be closed and convex
and let x € H. Then, there exists a unique z € K s.t.

o — 2] = dist(ar, K) = inf [lo | = d. (7)

Notation 1.24.



1. Let x € H. Let K C H be a closed subspace. Let Pxx be the point in
K that is closest to x. We can write

2. Write Kt ={u € H: (u,v) =0 Vv € K}.
Proposition 1.25. x — Pxz € K+.

Proposition 1.26 (Orthogonal decomposition of H). Let K C H be a closed
subspace, then any x € H can be written uniquely as

T =1x,4+x9 wherex, € K, x5 € K+. 9)

In fact, we have
T = PKZE,Z'Q = (I - PK)I' (10)

We write H = K & K+,

Definition 1.27 (Projections). Let X be a vector space. A linear map E :
X — X with E* = E is called a projection.

Proposition 1.28. Let £ : X — X be a projection. Then, we can write
X =M & N where

M={zreX:Ex=x},N={reX:Ex=0} (11)
Proposition 1.29. P, =1 — Pg.
Proposition 1.30. Both Py and Py are linear (and are thus projections).

Definition 1.31 (Orthogonal projection). We say Px : H — K s the
orthogonal projection of H onto K.
1.2.2 Riesz Representation theorem

Theorem 1.32. Riesz Representation theorem Let ¢ : H — C be a contin-
wous, linear functional. Then, there exists a unique f € H s.t.

o(u) = (u, f) Yu € H. (12)
Definition 1.33 (Dual space of H). The dual space of H is
H' ={p: H— C,¢ is continuous, linear}. (13)

Proposition 1.34. Riesz Representation theorem gives a map T : H' — H,
i.e., o — [ where T is a antilinear isometry of H' onto H.
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1.2.3 Orthornormal sets in Hilbert spaces

Definition 1.35. A set {e, : a € A} C H is an orthonormal set if
1. leq| =1 Va € A, and

2. (ea,e5) =0 if a # f.

Theorem 1.36 (Bessel’s inequality). Let {e, : & € A} be any orthonormal
set in H. Let x € H. Then,

> lzea) < lzl? (14)

and

Z(:p,ea)ea (15)

acA

converges in H.

Definition 1.37 (Maximal orthonormal sets). An orthonormal set S C H
is mazximal if it is not contained in any larger orthonormal set.

Proposition 1.38. Let H be a Hilbert space. Any orthonormal set O can
be extended to a maximal orthonormal set.

Definition 1.39. A Banach space B is separable if it has a countable dense
subset.

Proposition 1.40 (Maximal orthonormal sets in Hilbert spaces). Let H
be a separable Hilbert space. Then, we can construct a countable maximal
orthonormal set.

1.2.4  (2(A)
Definition 1.41. Let A be any set. Define

P(A) = {@:A—)C:Z\gp(a)\z <oo}, (16)

acA

where the summation is interpreted as taking supremum over all finite sums.



Theorem 1.42 (Riesz-Fisher theorem). Let S = {e, : a € A} C H be an
orthonormal set. If ¢ € (*(A), then there exists x € H s.t.

(z,eq) = p(a) Vae€ A (17)

Definition 1.43 (Unitary equivalence). Let Hy, Hy be Hilbert spaces. A lin-
ear map U : Hy — Hy is a unitary equivalence if U is bijective and preserves
ner product, i.e.,

(x’y)Hl = (Ul’, Uy>H2' (18>

Theorem 1.44. Let S = {e, : o € A} C H be a mazimal orthonormal set.
Then U : H — (*(A) given by x — o where

pla) = (r,e4) Va€e A (19)
1S a unitary equivalence.

Theorem 1.45 (Parseval’s formula). Let S = {e, : « € A} C H be a
maximal orthonormal set. If x,y € H, then

(2.y) = Y (,ea)(y. €a)- (20)

a€cA

1.3 Banach spaces

Proposition 1.46. Let V be a Banach space and let W C V' be a closed
subspace. Then, the quotient space V/W is complete.

Proposition 1.47. Let T : V — W be linear. Then, T is continuous if and
only if there exists C' > 0 s.t.

ITo] < Clloll Vo eV. (21)

1.4 Topological vector spaces and Fréchet spaces

Proposition 1.48. Let V' be a topological vector space, with topologies 11, Ty
and local bases at 0 given by By, By, respectively. Then 11 = 1o if and only if
every element of By contains an element of By and vice versa.



1.4.1 Seminorms

Deﬁniti% 1.49 (Seminorms). A seminorm on a vector space V' is a function
p:V — Rt s.t.

1. p(aw) = |a|p(v) Va € CYv € V, and
2. plv+w) < p(v) + p(w) Yo,w € V.

Definition 1.50 (Separating family of seminorms). A family F of semi-
norms on V is called separating if given any v € V with v # 0 there exists

p € F s.t. p(v) #0.

Theorem 1.51 (Description of the topology using seminorms). Let P be a
separating family of seminorms on a vector space V. For p € P and n € N,

N Vip,n) = {1: eV ipl) < %} | (22)

Let B be the set of all finite intersections of the V(py). Let T be the set of
all unions of translates of elements of B. Then, (V,T) is a locally convex
topological vector space. Furthermore, p € P is continuous and B is a local
base at 0.

Theorem 1.52 (Description of the topology using a metric). Let P be a
countable, separating family of seminorms on a vector space V. Define an
mwvariant metric d : V. x V. — Rt by

Ay = 3 2Bl =v) (23)

’ = 1"—]9]'(16—’0).

Proposition 1.53. Let P be a countable, separating family of seminorms on
a vector space V. Let 14 be the topology determined by the seminorms and
let 7,, be the topology determined by the metric. Then, 17, = T,.

Proposition 1.54. Let (V,T) be a locally convex topological vector space with
T determined by a separating family of seminorms P = {p, : « € A}. Then,

1. a sequence v, — v if and only if it converges in every seminorm, i.e.,
Pa(Vy —v) = 0 foralla € A, and



2. (v,) is Cauchy if and only if it is Cauchy in every seminorm, i.e.,
given € > 0 and o € A, there exists N € N s.t. if m,n > N, then
Do (Vm — vy) < €.

Proposition 1.55. Let V' be a Fréchet space with topology given by {pj};?‘;l.
Let w : V. — C be linear. Then, w is continuous if and only if there exists
C,N s.t.

w(v)| < CZ p;(v) YoveV. (24)

2  Duality

2.1 Hahn-Banach theorem and its corollaries

Theorem 2.1 (Hahn-Banach theorem). Let X be a vector space over F. Let
p be a seminorm. Let M C X be a subspace. Let f: M — F be linear s.t.

|f(2)] < p(x) Vo e M. (25)
Then, there exists an extension f : X — F linear s.t.
(@) <plx) VreX (26)

Corollary 2.2. Let X be a normed vector space over C. Let xy € X. Then,
there exists A € X' s.t.

Axg = |xg| and |Az| <|z|] Vze X. (27)
Remark 2.3. So, if X # {0} is a normed vector space, then
1. X" # {0} and

2. ifxe X and f(z) =0Vf e X', then x = 0.

Corollary 2.4. Let X be a normed vector space. Let M C X be a subspace.
Let xqg € X. Then, xo € M if and only if given f € X" and f =0 on M, we
have f(zo) = 0.

Corollary 2.5. Let X be a normed vector space. Let M C X be a subspace.
Then, M is dense in X if and only if given f € X' and f =0 on M, we
have f =0 on X.

Corollary 2.6. Let X be a normed vector space. If X' is separable, then X
1s separable.



2.2 Reflexive Banach spaces

Definition 2.7 (J). Let V be a Banach space. There is a natural map
J V= V" given by

Jv(w) =w(v) eC Ywe V' (28)
Proposition 2.8. The map J :V — J(V) C V" is an isometry onto J(V').
Definition 2.9 (Reflexive Banach spaces). A Banach space V is reflexive if

J V= V" is surjective.

2.3 Weak topologies

Definition 2.10 (Subbase). Let (X, ) be a topological space. Say Bs C T is
a subbase for T if the set B of all finite intersections of the elements of By is
a base for T, i.e., every element of T is a union of elements of B.

Theorem 2.11 (Tychonov’s theorem). If z,, a € A are compact Hausdorff,

then [],c4 Xa is compact Hausdorff with respect to the product topology.

Definition 2.12 (Weak topologies on X). Let X be a set. Let F be a family
of maps f : X — Yy where Yy is a topological space. Define a topology 7, on
X to have subbase

B,={f"'(V):V CY; open, f € F}. (29)
Call T, the weak topology induced by F or the F—topology.
Remark 2.13. A local subbase at 0 € X for 7, is given by the sets
{re X p,(r)<e,we X' e>0} wherep,(x)=|w(z)| (30)
So, the weak topology T, on X is a seminorm topology.

Corollary 2.14. z, — 0 weakly in X if and only if given any w € X', we
have w(x) — 0.

Remark 2.15. If xz, — 0 strongly, then z, — 0 weakly in X.
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2.4 Weak* topologies

Definition 2.16 (Weak* topologies on X). Let X be a topological vector
space with dual X'. Let F be the family

F=A{J,: X'=>C,z e X} where J,(w) =w(z) Ywe X" (31)

*

The weak* topology on X', 7*, is the F—topology on X'.

Remark 2.17. A local subbase at 0 € X' for 7 is given by the sets
(Jo) " (B(0,¢)) = {w € X" : | Jo(w)| = |w(z)| < e} (32)

So, the weak® topology T* is a seminorm topology.

Corollary 2.18. w,, — 0 in 7" if and only if given any x € X, we have

wp(z) — 0.

2.5 Compactness
2.5.1 Weak* compactness

Theorem 2.19 (Banach-Alaoglu). Let X be a Banach space. The norm
closed unit ball B in X',

B={Ae X :|Az|<1V|z| <1} (33)

15 compact in the weak® topology.

2.5.2 Weak* sequential compactness

Corollary 2.20. Let X be a separable Banach space. The norm closed unit
ball B in X' is sequentially compact in the weak® topology.

2.5.3 Weak compactness

Proposition 2.21. If X is a reflexive Banach space, then J : X — X" is a
homeomorphism of (X, ) onto (X", 7*) where T is the weak topology on X
and T* is the weak* topology on X".

Corollary 2.22. Let X be a reflexive Banach space. The norm closed unit
ball B in X is compact in the weak topology.
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2.5.4 Weak sequential compactness

Corollary 2.23. Let X be a separable, reflexive Banach space. The norm
closed unit ball B in X s sequentially compact.
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