
MATH 754 Review

Kaibo Tang

February 23, 2025

Contents

1 Finite dimensional normed spaces, Hilbert spaces, Banach
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1 Finite dimensional normed spaces, Hilbert

spaces, Banach spaces, Fréchet spaces, topo-

logical vector spaces

Definition 1.1 (Normed vector spaces). A normed vector space (V, ∥ · ∥) is
a vector space V equipped with a function ∥ · ∥ : V → R+ s.t.

1. ∥v∥ = 0 ⇐⇒ v = 0,

2. if α ∈ F, then ∥αv∥ = |α|∥V ∥, and

3. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

Definition 1.2 (Quotient spaces). Let V be a normed vector space and W
be a closed subspace of V . If v1, v2 ∈ V , we say v1 ∼ v2 if v1 − v2 ∈ W . For
v ∈ V , we write v +W for the equivalence class of V . Define

1. (v1 +W ) + (v2 +W ) = (v1 + v2) +W , and

2. if α ∈ C, define α(v1 +W ) = αv1 +W .

Then, the quotient space

V/W = {v +W : v ∈ V } (1)

is a vector space.

Definition 1.3 (Norms on quotient spaces). Define a norm on V/W by

∥v +W∥ = inf
w∈W

∥v + w∥ = inf
w∈W

∥v − w∥ = dist(v,W ). (2)

Definition 1.4 (Banach spaces). A Banach space (V, ∥·∥) is a normed vector
spaces which is complete with respect to the metric d : V × V → R+ given by
d(v, w) = ∥v − w∥.

Definition 1.5 (Inner product). An inner product on a vector space H is a
map (·, ·) : H ×H → C s.t.

1. (u1 + u2, v) = (u1, v) + (u2, v),

2. if α ∈ C, then (αu, v) = α(u, v),
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3. (u, v) = (v, u), and

4. (u, u) ≥ 0 and (u, u) = 0 ⇐⇒ u = 0.

Definition 1.6 (Hilbert spaces). A Hilbert space (H, (·, ·)) is a vector space
equipped with an inner product (·, ·) : H ×H → C s.t. H is a Banach space
with the norm ∥ · ∥ : H → R+ given by ∥u∥ = (u, u)1/2.

Definition 1.7 (Topological vector spaces). A topological vector space (V, τ)
is a vector space equipped with a topology τ s.t. addition + : V ×V → V and
scalar multiplication · : F× V → V are continuous.

Definition 1.8 (Neighborhood). A neighborhood of a ∈ V is an open set
that contains a.

Definition 1.9 (Local base). A collection B of neighborhoods of 0 is a local
base at 0 if every neighborhood of 0 contains an element of B.

Definition 1.10 (Locally convex topological vector spaces). A locally convex
topological vector space V is a topological vector space that has a local base
at 0 consisting of convex sets.

Definition 1.11 (Fréchet spaces). A Fréchet space is a locally convex topo-
logical vector space whose topology is defined by a complete invariant metric
d, i.e., d(u+ w, v + w) = d(u, v).

1.1 Finite dimensional normed vector spaces

Definition 1.12 (Equivalent norms). Norms ∥ · ∥1 and ∥ · ∥2 on vector space
V are equivalent if there exists constants a, b > 0 s.t.

a∥v∥1 ≤ ∥v∥2 ≤ b∥v∥1. (3)

Remark 1.13. Equivalent norms determine the same open sets.

Definition 1.14 (Linear isometry). Let B1, B2 be normed vector spaces. A
map i : (B1, N1) → (B2, N2) is a linear isometry if i is linear, bijective, and
N2(i(b)) = N1(b).

Proposition 1.15 (Equivalence of norms). Let (X,N) be a normed vector
space s.t. dimX = n ∈ N.
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1. There exists a norm Ñ on Cn and a linear isometry i : (Cn, Ñ) →
(X,N).

2. Any two norms on (X,N) are equivalent.

Proposition 1.16. Let V be a finite dimensional vector space. Then K ⊂ V
is compact if and only if K is closed and bounded.

Corollary 1.17. The norm closed unit ball {v ∈ V : ∥v∥ ≤ 1} in any finite
dimensional normed vector space is compact.

Theorem 1.18. Let V be an infinite dimensional normed-vector space. Then,
the norm closed unit ball {v ∈ V : ∥v∥ ≤ 1} is not compact.

1.2 Hilbert spaces

Proposition 1.19 (Cauchy-Schwarz). Let (H, (·, ·)) be a Hilbert space. Then,

|(u, v)| ≤ ∥u∥∥v∥. (4)

Proposition 1.20 (Parallelogram law). Let H be a Hilbert space. Then,

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2. (5)

1.2.1 Orthogonality

Definition 1.21. If u, v ∈ H, we say u is orthogonal to v and write u ⊥ v
if (u, v) = 0.

Definition 1.22 (Convex sets). Let V be a vector space. A set K ⊂ V is
convex if

tx+ (1− t)y ∈ K ∀x, y ∈ K, t ∈ [0, 1]. (6)

Proposition 1.23. Let H be a Hilbert space, let K ⊂ H be closed and convex
and let x ∈ H. Then, there exists a unique z ∈ K s.t.

∥x− z∥ = dist(x,K) = inf
y∈K

∥x− y∥ = d. (7)

Notation 1.24.
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1. Let x ∈ H. Let K ⊂ H be a closed subspace. Let PKx be the point in
K that is closest to x. We can write

x = PKx+ (I − PK)x. (8)

2. Write K⊥ = {u ∈ H : (u, v) = 0 ∀v ∈ K}.

Proposition 1.25. x− PKx ∈ K⊥.

Proposition 1.26 (Orthogonal decomposition of H). Let K ⊂ H be a closed
subspace, then any x ∈ H can be written uniquely as

x = x1 + x2 where x1 ∈ K, x2 ∈ K⊥. (9)

In fact, we have
x1 = PKx, x2 = (I − PK)x. (10)

We write H = K ⊕K⊥.

Definition 1.27 (Projections). Let X be a vector space. A linear map E :
X → X with E2 = E is called a projection.

Proposition 1.28. Let E : X → X be a projection. Then, we can write
X = M ⊕N where

M = {x ∈ X : Ex = x}, N = {x ∈ X : Ex = 0}. (11)

Proposition 1.29. PK⊥ = I − PK.

Proposition 1.30. Both PK and PK⊥ are linear (and are thus projections).

Definition 1.31 (Orthogonal projection). We say PK : H → K is the
orthogonal projection of H onto K.

1.2.2 Riesz Representation theorem

Theorem 1.32. Riesz Representation theorem Let φ : H → C be a contin-
uous, linear functional. Then, there exists a unique f ∈ H s.t.

φ(u) = (u, f) ∀u ∈ H. (12)

Definition 1.33 (Dual space of H). The dual space of H is

H ′ = {φ : H → C, φ is continuous, linear}. (13)

Proposition 1.34. Riesz Representation theorem gives a map T : H ′ → H,
i.e., φ 7→ f where T is a antilinear isometry of H ′ onto H.
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1.2.3 Orthornormal sets in Hilbert spaces

Definition 1.35. A set {eα : α ∈ A} ⊂ H is an orthonormal set if

1. |eα| = 1 ∀α ∈ A, and

2. (eα, eβ) = 0 if α ̸= β.

Theorem 1.36 (Bessel’s inequality). Let {eα : α ∈ A} be any orthonormal
set in H. Let x ∈ H. Then,∑

α∈A

|(x, eα)|2 ≤ ∥x∥2 (14)

and ∑
α∈A

(x, eα)eα (15)

converges in H.

Definition 1.37 (Maximal orthonormal sets). An orthonormal set S ⊂ H
is maximal if it is not contained in any larger orthonormal set.

Proposition 1.38. Let H be a Hilbert space. Any orthonormal set O can
be extended to a maximal orthonormal set.

Definition 1.39. A Banach space B is separable if it has a countable dense
subset.

Proposition 1.40 (Maximal orthonormal sets in Hilbert spaces). Let H
be a separable Hilbert space. Then, we can construct a countable maximal
orthonormal set.

1.2.4 ℓ2(A)

Definition 1.41. Let A be any set. Define

ℓ2(A) =

{
φ : A → C :

∑
α∈A

|φ(α)|2 < ∞

}
, (16)

where the summation is interpreted as taking supremum over all finite sums.
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Theorem 1.42 (Riesz-Fisher theorem). Let S = {eα : α ∈ A} ⊂ H be an
orthonormal set. If φ ∈ ℓ2(A), then there exists x ∈ H s.t.

(x, eα) = φ(α) ∀α ∈ A. (17)

Definition 1.43 (Unitary equivalence). Let H1, H2 be Hilbert spaces. A lin-
ear map U : H1 → H2 is a unitary equivalence if U is bijective and preserves
inner product, i.e.,

(x, y)H1 = (Ux, Uy)H2 . (18)

Theorem 1.44. Let S = {eα : α ∈ A} ⊂ H be a maximal orthonormal set.
Then U : H → ℓ2(A) given by x 7→ φ where

φ(α) = (x, eα) ∀α ∈ A (19)

is a unitary equivalence.

Theorem 1.45 (Parseval’s formula). Let S = {eα : α ∈ A} ⊂ H be a
maximal orthonormal set. If x, y ∈ H, then

(x, y) =
∑
α∈A

(x, eα)(y, eα). (20)

1.3 Banach spaces

Proposition 1.46. Let V be a Banach space and let W ⊂ V be a closed
subspace. Then, the quotient space V/W is complete.

Proposition 1.47. Let T : V → W be linear. Then, T is continuous if and
only if there exists C > 0 s.t.

∥Tv∥ ≤ C∥v∥ ∀v ∈ V. (21)

1.4 Topological vector spaces and Fréchet spaces

Proposition 1.48. Let V be a topological vector space, with topologies τ1, τ2
and local bases at 0 given by B1,B2, respectively. Then τ1 = τ2 if and only if
every element of B1 contains an element of B2 and vice versa.
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1.4.1 Seminorms

Definition 1.49 (Seminorms). A seminorm on a vector space V is a function
p : V → R+ s.t.

1. p(αv) = |α|p(v) ∀α ∈ C ∀v ∈ V , and

2. p(v + w) ≤ p(v) + p(w) ∀v, w ∈ V .

Definition 1.50 (Separating family of seminorms). A family F of semi-
norms on V is called separating if given any v ∈ V with v ̸= 0 there exists
p ∈ F s.t. p(v) ̸= 0.

Theorem 1.51 (Description of the topology using seminorms). Let P be a
separating family of seminorms on a vector space V . For p ∈ P and n ∈ N,
let

V (p, n) =

{
x ∈ V : p(x) <

1

n

}
. (22)

Let B be the set of all finite intersections of the V (pn). Let τ be the set of
all unions of translates of elements of B. Then, (V, τ) is a locally convex
topological vector space. Furthermore, p ∈ P is continuous and B is a local
base at 0.

Theorem 1.52 (Description of the topology using a metric). Let P be a
countable, separating family of seminorms on a vector space V . Define an
invariant metric d : V × V → R+ by

d(u, v) =
∞∑
j=1

2−jpj(u− v)

1 + pj(u− v)
. (23)

Proposition 1.53. Let P be a countable, separating family of seminorms on
a vector space V . Let τs be the topology determined by the seminorms and
let τm be the topology determined by the metric. Then, τs = τm.

Proposition 1.54. Let (V, τ) be a locally convex topological vector space with
τ determined by a separating family of seminorms P = {pα : α ∈ A}. Then,

1. a sequence vn → v if and only if it converges in every seminorm, i.e.,
pα(vn − v) → 0 forallα ∈ A, and
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2. (vn) is Cauchy if and only if it is Cauchy in every seminorm, i.e.,
given ε > 0 and α ∈ A, there exists N ∈ N s.t. if m,n ≥ N , then
pα(vm − vn) < ε.

Proposition 1.55. Let V be a Fréchet space with topology given by {pj}∞j=1.
Let ω : V → C be linear. Then, ω is continuous if and only if there exists
C,N s.t.

|ω(v)| ≤ C

N∑
j=1

pj(v) ∀v ∈ V. (24)

2 Duality

2.1 Hahn-Banach theorem and its corollaries

Theorem 2.1 (Hahn-Banach theorem). Let X be a vector space over F. Let
p be a seminorm. Let M ⊂ X be a subspace. Let f : M → F be linear s.t.

|f(x)| ≤ p(x) ∀x ∈ M. (25)

Then, there exists an extension f̃ : X → F linear s.t.

|f̃(x)| ≤ p(x) ∀x ∈ X. (26)

Corollary 2.2. Let X be a normed vector space over C. Let x0 ∈ X. Then,
there exists Λ ∈ X ′ s.t.

Λx0 = |x0| and |Λx| ≤ |x| ∀x ∈ X. (27)

Remark 2.3. So, if X ̸= {0} is a normed vector space, then

1. X ′ ̸= {0} and

2. if x ∈ X and f(x) = 0 ∀f ∈ X ′, then x = 0.

Corollary 2.4. Let X be a normed vector space. Let M ⊂ X be a subspace.
Let x0 ∈ X. Then, x0 ∈ M if and only if given f ∈ X ′ and f = 0 on M , we
have f(x0) = 0.

Corollary 2.5. Let X be a normed vector space. Let M ⊂ X be a subspace.
Then, M is dense in X if and only if given f ∈ X ′ and f = 0 on M , we
have f = 0 on X.

Corollary 2.6. Let X be a normed vector space. If X ′ is separable, then X
is separable.
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2.2 Reflexive Banach spaces

Definition 2.7 (J). Let V be a Banach space. There is a natural map
J : V → V ′′ given by

Jv(ω) = ω(v) ∈ C ∀ω ∈ V ′. (28)

Proposition 2.8. The map J : V → J(V ) ⊂ V ′′ is an isometry onto J(V ).

Definition 2.9 (Reflexive Banach spaces). A Banach space V is reflexive if
J : V → V ′′ is surjective.

2.3 Weak topologies

Definition 2.10 (Subbase). Let (X, τ) be a topological space. Say Bs ⊂ τ is
a subbase for τ if the set B of all finite intersections of the elements of Bs is
a base for τ , i.e., every element of τ is a union of elements of B.

Theorem 2.11 (Tychonov’s theorem). If xα, α ∈ A are compact Hausdorff,
then

∏
α∈AXα is compact Hausdorff with respect to the product topology.

Definition 2.12 (Weak topologies on X). Let X be a set. Let F be a family
of maps f : X → Yf where Yf is a topological space. Define a topology τw on
X to have subbase

Bs = {f−1(V ) : V ⊂ Yf open, f ∈ F}. (29)

Call τw the weak topology induced by F or the F−topology.

Remark 2.13. A local subbase at 0 ∈ X for τw is given by the sets

{x ∈ X : pω(x) < ε, ω ∈ X ′, ε > 0} where pω(x) = |ω(x)|. (30)

So, the weak topology τw on X is a seminorm topology.

Corollary 2.14. xn ⇀ 0 weakly in X if and only if given any ω ∈ X ′, we
have ω(x) → 0.

Remark 2.15. If xn → 0 strongly, then xn ⇀ 0 weakly in X.
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2.4 Weak∗ topologies

Definition 2.16 (Weak∗ topologies on X). Let X be a topological vector
space with dual X ′. Let F be the family

F = {Jx : X ′ → C, x ∈ X} where Jx(ω) = ω(x) ∀ω ∈ X ′. (31)

The weak∗ topology on X ′, τ ∗, is the F−topology on X ′.

Remark 2.17. A local subbase at 0 ∈ X ′ for τ ∗ is given by the sets

(Jx)
−1(B(0, ε)) = {ω ∈ X ′ : |Jx(ω)| = |ω(x)| < ε}. (32)

So, the weak∗ topology τ ∗ is a seminorm topology.

Corollary 2.18. ωn → 0 in τ ∗ if and only if given any x ∈ X, we have
ωn(x) → 0.

2.5 Compactness

2.5.1 Weak∗ compactness

Theorem 2.19 (Banach-Alaoglu). Let X be a Banach space. The norm
closed unit ball B in X ′,

B = {Λ ∈ X ′ : |Λx| ≤ 1 ∀|x| ≤ 1} (33)

is compact in the weak∗ topology.

2.5.2 Weak∗ sequential compactness

Corollary 2.20. Let X be a separable Banach space. The norm closed unit
ball B in X ′ is sequentially compact in the weak∗ topology.

2.5.3 Weak compactness

Proposition 2.21. If X is a reflexive Banach space, then J : X → X ′′ is a
homeomorphism of (X, τ) onto (X ′′, τ ∗) where τ is the weak topology on X
and τ ∗ is the weak∗ topology on X ′′.

Corollary 2.22. Let X be a reflexive Banach space. The norm closed unit
ball B in X is compact in the weak topology.

11



2.5.4 Weak sequential compactness

Corollary 2.23. Let X be a separable, reflexive Banach space. The norm
closed unit ball B in X is sequentially compact.
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