
Converting ANTs affine matrix to a 4× 4
homogeneous matrix

Kaibo Tang

February 10, 2024

1 Background
Affine registration between volumes is a common procedure in a medical
image pre-processing pipeline. ANTs1 is a popular and clinically validated
toolbox that we use frequently. Performing affine registration using ANTs
is fairly straight forward. We assume readers of this note have background
knowledge of ANTs.

For the rest of this note, suppose we are using ANTsPy2 and we use
the following function to perform affine registration on the moving and fixed
images.

import ants
import shutil

def run_ants_affine(moving_fn: str, fixed_fn: str) -> None:
moving = ants.image_read(moving_fn)
fixed = ants.image_read(fixed_fn)
output = ants.registration(fixed=fixed, moving=moving,

type_of_transform='Affine')↪→

# save warped image
ants.image_write(output['warpedmovout'], 'affine.nii.gz')
# save forward transformation
shutil.copyfile(output['fwdtransforms'][0], 'affine.mat')

1https://github.com/ANTsX/ANTs
2https://github.com/ANTsX/ANTsPy

1

https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTsPy


The output file affine.nii.gz is the transformed (or warped) image
while affine.mat is the associated “affine matrix”, which defines how the
transformation is performed under world coordinates.

2 Problem
When we load the .mat file using YFP (your favorite package), we see that
the content of the file actually looks something like this.

{'AffineTransform_float_3_3': array([[ 9.67558980e-01],
[ 3.71180326e-02],
[ 1.23559460e-02],
[-4.93900105e-02],
[ 9.07873511e-01],
[-2.29182512e-01],
[-3.32694985e-02],
[ 2.48323038e-01],
[ 8.58248472e-01],
[ 4.41851616e-02],
[ 5.25157928e-01],
[-1.46762085e+01]], dtype=float32),
'fixed': array([[126.26413],
[127.34694],
[134.72673]], dtype=float32)}

It’s a dictionary containing an ndarray of shape (12, 1) whose key
is 'AffineTransform_float_3_3' and an ndarray of shape (3, 1)
whose key is 'fixed'. Notice that this is not the usual 4× 4 homogeneous
affine matrix we deal with everyday. This dictionary turns out to be an
itkMatrixOffsetTransformBase which is in LPS convention. In fact,
ANTs itself based a lot on Insight Toolkit (ITK)3, which uses LPS convention.

However, when we play with volumetric data using packages such as Ni-
Babel4 or spherical data using packages like Vedo5, PyVista6, VTK7, all of a
sudden we realize that we are dealing with the RAS coordinate system. Let’s
say we want apply the affine matrix we just obtained on the reconstructed

3https://itk.org/
4https://github.com/nipy/nibabel
5https://github.com/marcomusy/vedo
6https://github.com/pyvista
7https://vtk.org/

2

https://itk.org/
https://github.com/nipy/nibabel
https://github.com/marcomusy/vedo
https://github.com/pyvista
https://vtk.org/


surface of the same subject (represented by a set of points). It would be very
intuitive to want an “true” affine matrix Ã ∈ M4×4 such that we can move
each point p ∈ R3 by just doing the dot product, i.e., Ã · p̂, where we append
a 1 to the last component of each p to obtain p̂ ∈ R4.

At this point, we realize we are facing two problems:

1. Constructing Ã from the dictionary we read from affine.mat.

2. Getting Ã from LPS to RAS.

3 Solution
The following solution is attributed to frheault8.

import numpy as np
import scipy.io as sio

def ants_mat_to_4x4(ants_mat_fn: str) -> np.ndarray:
"""
Read in and convert the .mat file from ANTs format to a 4x4

matrix.↪→

"""
# read in .mat file
_dict = sio.loadmat(ants_mat_fn)
# define transformation from LPS to RAS
lps2ras = np.diag([-1, -1, 1])
# get rotation, translation, and center
rot = _dict['AffineTransform_float_3_3'][0:9].reshape((3,

3))↪→

trans = _dict['AffineTransform_float_3_3'][9:12]
center = _dict['fixed']
# compute offset for \tilde{A}
r_offset = (- np.dot(rot, center) + center + trans).T * [-1,

-1, 1]↪→

# compute rotation for \tilde{A}
r_rot = np.dot(np.dot(lps2ras, rot), lps2ras)
# set offset and rotation
data = np.eye(4)
data[0:3, 3] = r_offset
data[:3, :3] = r_rot
return data

8https://github.com/dipy/dipy/discussions/2165

3

https://github.com/dipy/dipy/discussions/2165


Before explaining in detail how this function works, I will give a brief
overview of how an affine transformation is characterized in ITK9. The code
should be self-explanatory after this introduction.

In ITK, an affine transformation T : R3 → R3 is given by

T (x) = A(x − c) + t + c,

where A ∈ M3×3 is the 3 × 3 matrix corresponding to the first 9 com-
ponents of the value of 'AffineTransform_float_3_3', c ∈ R3 is
the center which can be obtained from the value of 'fixed', and t ∈
R3 is the translation which is also the last 3 components of the value of
'AffineTransform_float_3_3'.

The upper left 3× 3 matrix of Ã would come directly from A. However,
remember that we need to apply a transformation, i.e., lps2ras, that takes
this matrix from LPS to RAS.

The upper right 3 × 1 column of Ã would be the “offset”. Luckily, the
offset is easy to calculate since we are given the formula for it in SimpleITK’s
documentation10, i.e.,

t + c − Ac.
Remeber that we still need to apply lps2ras to it.

4 Shortcut
There is an easier way of doing this with minimal programming. Suppose
ANTs is installed. The following bash code does exactly the same thing but
easier.

ConvertTransformFile 3 affine.mat affine_hm_ras.mat --hm --ras

9See https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html#transforms
for more details

10https://simpleitk.readthedocs.io/en/master

4

https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html#transforms
https://simpleitk.readthedocs.io/en/master

	Background
	Problem
	Solution
	Shortcut

