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1 Does the forward process tend to N (0, I)?

Proposition 1.1. Suppose an ∈ (0, 1) ∀n ∈ N. Then,
∞∏
n=1

(1− an) = 0 ⇐⇒
∞∑
n=1

an diverges. (1)

Proof.

1. (=⇒). For the sake of contradiction, assume
∑∞

n=1 converges, in which
case, we know an → 0 as n → ∞. In addition, since

∞∏
n=1

(1− an) = 0, (2)

we have
∞∑
n=1

− ln(1− an) = ∞. (3)

By L’Hopital’s rule, we see that

lim
n→∞

− an
ln(1− an)

= lim
n→∞

(1− an) = 1, (4)

and limit comparison test applies, in which case, we know
∑∞

n=1 also
diverges, which is contradiction.
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2. (⇐=). Notice that

∞∑
n=1

− ln(1− an) ≥
∞∑
n=1

an. (5)

By comparison test, we see that

∞∑
n=1

− ln(1− an) = ∞, (6)

i.e.,
∞∏
n=1

(1− an) = 0. (7)

Proposition 1.2. Given βt ∈ (0, 1) such that
∑∞

t=1 βt diverges, a Markov
chain with Gaussian transitions

p(xt|xt−1) = N (
√
1− βtxt−1, βtI) (8)

satisfies
p(xt) → N (0, I) as t → ∞. (9)

Proof.

1. For each t ≥ 1, let

yt =
xt −

√
1− βtxt−1√
βt

. (10)

We see that yt is a standard normal random variable, given x0, · · · ,xt−1.
Hence, we see that yt is independent on x0, · · · ,xt−1. Similarly, we see
that x0,y1, · · · ,yt are independent.

2. Now, notice that

xt =
√
1− βtxt−1 +

√
βtyt (11)

=
√
1− βt

√
1− βt−1xt−2 +

√
1− βt

√
βt−1yt−1 +

√
βtyt (12)

= · · · (13)

=
t∏

i=1

√
1− βix0 +

t−1∑
i=1

[(
t∏

j=i+1

√
1− βj

)√
βiyi

]
+
√

βtyt. (14)
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We see that the distribution of xt given x0 is normal with expectation

µ =
t∏

i=1

√
1− βix0, (15)

and covariance matrix

Σ =
t−1∑
i=1

[(
t∏

j=i+1

(1− βj)

)
βiI

]
+ βtI. (16)

To simplify the covariance matrix, notice that(
t∏

j=i+1

(1− βj)

)
βi =

(
t∏

j=i+1

(1− βj)

)
(1− (1− βi)) (17)

=
t∏

j=i+1

(1− βj)−
t∏

j=i

(1− βj). (18)

Hence, we have

Σ =
t−1∑
i=1

[
t∏

j=i+1

(1− βj)I −
t∏

j=i

(1− βj)I

]
+ βtI (19)

= (1− βt)I −
t∏

j=1

(1− βj)I + βtI (20)

=

[
1−

t∏
j=1

(1− βj)

]
I. (21)

3. Finally, since
∑∞

j=1 βj diverges, we see that
∏∞

j=1(1 − βj) = 0 from
Proposition 1.1. Hence, we see that as t → ∞, we have

µ =
t∏

i=1

√
1− βix0 → 0, Σ =

[
1−

t∏
j=1

(1− βj)

]
I → I (22)

for any x0 finite.

Remark 1.1. Let αj := 1− βj and ᾱt :=
∏t

j=1 αj. We see that

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (23)
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2 How do you get from NLL to Lsimple?

Starting with the negative log likelihood,

− ln pθ(x0), (24)

the authors manage to reduce this objective to

Lsimple(θ) = Et,ϵ

(∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2) . (25)

This is done in three steps, which I will outline below.

2.1 ELBO

We first find a variational bound for the negative log likelihood term, i.e.,

− ln pθ(x0) ≤ Ex1:T∼q(x1:T |x0)

(
− ln

pθ(x0:T )

q(x1:T |x0)

)
. (26)

Proof of this inequality involves noticing that ln(·) is a convex function and
invoking Jensen’s inequality.

2.2 KL divergence

Using the definition of pθ and q, we see that

− ln
pθ(x0:T )

q(x1:T |x0)
= − ln p(xT )−

T∑
t=1

ln
pθ(xt−1|xt)

q(xt|xt−1)
(27)

= − ln p(xT )−
T∑
t=2

ln
pθ(xt−1|xt)

q(xt|xt−1)
− ln

pθ(x0|x1)

q(x1|x0)
, (28)

where the second equality follows from taking the first term out of the sum-
mation. Notice that

q(xt|xt−1)q(xt−1|x0) = q(xt−1,xt|x0) = q(xt−1|xt,x0)q(xt|x0). (29)
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Hence, we have

− ln
pθ(x0:T )

q(x1:T |x0)
= − ln p(xT )−

T∑
t=2

ln
pθ(xt−1|xt)

q(xt−1|xt,x0)
· q(xt−1|x0)

q(xt|x0)
− ln

pθ(x0|x1)

q(x1|x0)

(30)

= − ln
p(xT )

q(xT |x0)
−

T∑
t=2

ln
pθ(xt−1|xt)

q(xt−1|xt,x0)
− ln pθ(x0|x1).

(31)

Now, we notice that

LT := Ex1:T∼q(x1:T |x0)

(
− ln

p(xT )

q(xT |x0)

)
(32)

= Ex1:T∼q(x1:T |x0)

[
ExT∼q(xT |x0)

(
− ln

p(xT )

q(xT |x0)

)]
(33)

= Ex1:T∼q(x1:T |x0)

[∫
q(xT |x0) ln

q(xT |x0)

p(xT )
dxT

]
(34)

= Ex1:T∼q(x1:T |x0) [DKL(q(xT |x0) ∥ p(xT ))] . (35)

Remark 2.1. Given non-learnable variance schedule βt, the term LT has no
learnable parameter and is thus constant during training.

Notice that

Ext−1,xt∼q(xt−1xt|x0)

(
− ln

pθ(xt−1|xt)

q(xt−1|xt,x0)

)
(36)

=

∫∫
q(xt−1,xt|x0) ln

q(xt−1|xt,x0)

pθ(xt−1|xt)
dxt−1dxt (37)

=

∫
q(xt|x0)

∫
q(xt−1|xt,x0) ln

q(xt−1|xt,x0)

pθ(xt−1|xt)
dxt−1dxt (38)

=Ext∼q(xt|x0) [DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))] , (39)

where we use the fact that

q(xt−1,xt|x0) = q(xt−1|xt,x0)q(xt|x0) (40)
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for the second equality. Hence, we have

Lt−1 := Ex1:T∼q(x1:T |x0)

(
− ln

pθ(xt−1|xt)

q(xt−1|xt,x0)

)
(41)

= Ex1:T∼q(x1:T |x0)

[
Ext−1,xt∼q(xt−1xt|x0)

(
− ln

pθ(xt−1|xt)

q(xt−1|xt,x0)

)]
(42)

= Ex1:T∼q(x1:T |x0) [DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))] (43)

Finally, let
L0 := Ex1:T∼q(x1:T |x0) (− ln pθ(x0|x1)) . (44)

We see that now the variational bound is given by

− ln pθ(x0) ≤ LT +
T∑
t=2

Lt−1 + L0. (45)

2.3 Further simplification

We state (without proof) the expression for the KL divergence between two
multivariate normal distributions.1

Lemma 2.1. Let P and Q denote two multivariate normal distributions with
means µ1,µ2 ∈ Rn, respectively, and covariance matrices Σ1,Σ2 ∈ Mn×n,
respectively. Then, the KL divergence of P from Q is given by

DKL(P ∥ Q) =
1

2

[
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)− ln
detΣ1

detΣ2

− n

]
.

(46)

Corollary 2.1. In the previous case, let Σ1 = σ1I and Σ2 = σ2I. Then,

DKL(P ∥ Q) =
1

2

[
∥µ2 − µ1∥2

σ2
2

+
nσ2

1

σ2
2

− ln
σ1

σ2

− n

]
. (47)

Now, consider the reverse process at time t given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) for t = 2, 3, · · · , T. (48)

1A detailed proof can be found at https://statproofbook.github.io/P/mvn-kl.html
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The following simplification assumes the covariance matrix at each step to
be non-learnable and dependent only on time t, i.e.,

Σθ(xt, t) = σ2
t I, (49)

in which case, we have

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (50)

Recall that for the forward process posterior, we have

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (51)

where µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt (52)

and β̃t :=
1− ᾱt−1

1− ᾱt

βt. (53)

From Corollary 2.1, we see that

DKL(P ∥ Q) =
1

2σ2
t

∥µ̃t(xt,x0)− µθ(xt, t)∥2 + const., (54)

since σt and β̃t are fixed.
Now, we recall equation (23), i.e.,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (55)

Notice that we can reparameterize xt as

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ where ϵ ∼ N (0, I). (56)

Substituting (52), (56) into (54), we see that

Lt−1 = Eϵ

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt(x0, ϵ)−

βt√
1− ᾱt

ϵ

)
− µθ(xt(x0, ϵ), t)

∥∥∥∥2
]
+const.

(57)
Instead of directly parameterizing µθ, consider

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (58)

where ϵθ predicts ϵ from xt.
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Remark 2.2. During inference, we need to sample xt−1 ∼ pθ(xt−1|xt).
Reparameterizing again, we see that

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz where z ∼ N (0, I). (59)

Finally, we arrive at

Lt−1 = Eϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] (60)

3 Disclaimer

There are still several loose ends that are yet to be tied. For example, we
have not demonstrated how to deal with L0, which is nontrivial. But I believe
the most important stuff are well-covered in this note. In addition, I would
like to also use this opportunity to highlight some caveats.

1. Although the authors do not make this explicit, in Proposition 1.2, we
see that the divergence of

∑∞
t=1 βt is essential for DDPM to work.

2. In the original paper, the authors start with Ex0(− ln pθ(x0)). However,
I think taking the expectation over x0 creates confusion. Hence, I
started with − ln pθ(x0).

3. The authors use Eq ambiguously. Since I dropped Ex0 , we only need to
deal with Ex1:T∼q(x1:T |x0) and later on Eϵ, which makes the derivation
a lot clearer.

4. Proposition 1.1, Proposition 1.2, Lemma 2.1, and Corollary 2.1 are
great conclusions to remember.
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