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1 Does the forward process tend to N (0,1)?

Proposition 1.1. Suppose a,, € (0,1) Vn € N. Then,

H(l —a,) =0 <= Z a, diverges. (1)
n=1 n=1

Proof.

1. (=). For the sake of contradiction, assume >~ converges, in which
case, we know a,, — 0 as n — oo. In addition, since

o0

[ -a) =0 (2)
we have o
Z —In(1 —a,) = . (3)

By L’Hopital’s rule, we see that
an

P T —ay ok T = @

and limit comparison test applies, in which case, we know » >~ also
diverges, which is contradiction.
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2. («<=). Notice that

Z —In(1 —a,) > Zan (5)

ie.,

[[a-a) =0 (7)

]

Proposition 1.2. Given 5 € (0,1) such that Y -, B¢ diverges, a Markov
chain with Gaussian transitions

p(@i|e1) = N(V1 = By, BI) (8)

satisfies
p(xy) > N(0,I) ast— oc. 9)

Proof.
1. For each t > 1, let

T — V1 — By

Yy = (10)

VB
We see that y; is a standard normal random variable, given g, - - - , x;_1.
Hence, we see that y; is independent on @, - - - , ;1. Similarly, we see

that xg,y1, - ,y; are independent.

2. Now, notice that

xy=+/1—-Fxi 1+ \/Eyt (11)
= \/1 — Bt\/l — P12 + /1 = B/ Beo1Ye—1 + \/Eyt (12)

— ... (13)

| \/l—ﬁiazg%—z (H \/1—5]') Bryi| + /By (14)

j=i+1

=1



We see that the distribution of x; given x( is normal with expectation

t

N:H\/l—ﬁzﬂ?o, (15)

i=1
and covariance matrix

X[

j=i+1

+ B (16)

To simplify the covariance matrix, notice that

( 1] - 5;‘)) Bi = < IT - /33')) (I-(1-8)) (17

j=i+1 j=i+1
t t
:H 1_BJ Hl_ﬁj (18>
Jj=i+1 j=t

Hence, we have

2:2 LH (L= )T =[] =8I | + T (19)
=== ][0 =) +61 (20)
- [1 - H(l — Bj)] I (21)

3. Finally, since ) 7, §; diverges, we see that [[Z,(1 — ;) = 0 from
Proposition 1.1. Hence, we see that as t — oo, we have

t
;,L:H\/l—iﬁiwoﬁo, =
i=1

t

1-JJa —ﬁj)] I—-1 (22

j=1

for any x finite.

Remark 1.1. Let aj :=1— 3; and oy = IT

J=1

q(zi|xo) = N (45 Vo, (1 — ay)I). (23)

a;. We see that

3



2 How do you get from NLL to Lgypie?

Starting with the negative log likelihood,

— In py(x), (24)

the authors manage to reduce this objective to

Lgimple(0) = B4 (”e — eg(vVarxo + V1 — e, t)H2> . (25)

This is done in three steps, which I will outline below.

2.1 ELBO
We first find a variational bound for the negative log likelihood term, i.e.,
10 (@0) < By oo (12X (26)
‘ ‘ q(x1.7|0)

Proof of this inequality involves noticing that In(-) is a convex function and
invoking Jensen’s inequality.

2.2 KL divergence

Using the definition of py and ¢, we see that

T
p@(fBO:T) fl?t 1‘51515
—In———-=—In 27
@aloy — PEn) = WS (27)
T
~Inp(er) Z o(xi1|xy) In Ppo(To| 1) (28)
q(@i|xe1) q(x1]x0)

t=2

where the second equality follows from taking the first term out of the sum-
mation. Notice that

q(]@i—1)g(Ti—1]|20) = q(@1—1, 24| 0) = q(T1—1]|T1, T0)q(21|20). (29)



Hence, we have

g po@er) s pe(@eal@)  g(@ealen) | p(alz)
: q(1.7|T0) lnp(xr) ;1 q(xi1|, o) qe|xo) o q(x1]2)
(30)

— 1Ilpg(il’,'0|931).

(1) (@1 |2;)
— _In p\rr _Zln Po\Lt—1|L¢

q(xr|xo) P q(xi—1]Ty, T0)

(31)

Now, we notice that

Lt = Eay et (10222 (32

xr|To)
p(xr) )]
:Eilil.TN T1.T7|To E:Z:TN TT|T0 _ln— 33
.q(A|>{ q<|>( (o) (33)
q(xr|z0)
= E:I: ~q(x1.7|T0 1 - N d 34
Ler~a(@ 7o) [/q(%!fvo) i wT] (34)
= Eo\ rrq(@rrlzo) [PrL(q(Z7|T0) || P(TT))] - (35)

Remark 2.1. Given non-learnable variance schedule By, the term Ly has no
learnable parameter and is thus constant during training.

Notice that

pe(wt—lfwt) )
Emt, xi~q(xr_ x| —In ———— 36
1,xe~q(Tr— 12| o)( Q(wt 1|wt’w0) ( )

// 2 aifay) In LI T) 4o g, (37)

Pe(wt 1‘3316)
(mt 1|33t>330)
— In ————~ dx;_1d 38
/ (wt\mo)/q(wt 1|xe, o) In oo (@) Xy 1dx, (38)
=B, mq(wilwo) [Dxr(q(@i—1|Ts, 20) || po(@i-1|:))] (39)
where we use the fact that
q(xs—1, x| 20) = (11|28, T0) (4| 0) (40)



for the second equality. Hence, we have

pg(wt—l‘wt>
L 4= Ew ~q(x1.7|T _1 (x| x0) 41
1 1:7~q(@ 1.7 |20) ( i q(mt_1|$tam0)> "

p@(wtfllwf)
= Ew1;TNQ($1;T|iE0) |:Ewt—1,wt~q(wt—1wt|wo) (_ In m)} (42)

= B\ req(@rrleo) [DrL((@ |21, ®0) || po(@i-1|21))] (43)

Finally, let
Ly := Eml;TNl](ml:T\mo) (_ lnp@(wo‘wl)) : <44>

We see that now the variational bound is given by

T
— hlpg(ivo) S LT + Z Lt—l + L(). (45)

t=2

2.3 Further simplification

We state (without proof) the expression for the KL divergence between two
multivariate normal distributions[]

Lemma 2.1. Let P and Q) denote two multivariate normal distributions with
means i, o € R™, respectively, and covariance matrices 31,25 € My xp,
respectively. Then, the KL divergence of P from @Q is given by

1 det X2
DxiL(P || Q) = 3 [(Hz — 1) 5 (e — ) +tr(B37%) — In - ] :

det 22 -
(46)

Corollary 2.1. In the previous case, let 31 = oI and 39 = 0oI. Then,

1 — 2 no? o
PPl =g [l rot 2] g
2 2

Now, consider the reverse process at time t given by

pé)(wt—1|wt) :N<wt*1;l'l'9(wt7t>7Ee(wtyt)) fOI' t= 2737”' 7T' (48>

LA detailed proof can be found at https://statproofbook.github.io/P /mvn-kl.html
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The following simplification assumes the covariance matrix at each step to
be non-learnable and dependent only on time ¢, i.e.,

So(xi,t) = o} 1, (49)
in which case, we have
po(@ia|®;) = N 1; po(, 1), 07 1) (50)

Recall that for the forward process posterior, we have

Q(wt—1|213t7 330) = N(wt—l; I:Lt(wt, 330)7 BtI)J (51>
NG 1—ay_
where fu(xy, o) = il iﬁtmo + Vail 70% 1):1;,5 (52)
1-— Qi 1-— Qg
= 1—ay
d gy .= —0;. 53
and f3 1—a, By ( )
From Corollary 2.1, we see that
1, .
D (P || Q) = g llftu(1, o) — pro(ms, 1)|* + comst., (54)
t

since o; and Bt are fixed.
Now, we recall equation (23), i.e.,

q(xi|To) = N (24; Vauzg, (1 — ap)I). (55)
Notice that we can reparameterize x; as
xi(xo, €) = Vayxy + /1 — aze  where e ~ N(0,1). (56)

Substituting (52), (56) into (54), we see that

2

1 1
L, =FE. T‘tz \/_Oé_t (:ct(a:o,e) — \/%e) — po(xi(x0, €),1)|| | +const.
(57)
Instead of directly parameterizing pg, consider
1 By
t) = e —— t 58
“9<wt7 ) \/Et (wt mee(wh )) ) ( )

where €y predicts € from ;.



Remark 2.2. During inference, we need to sample x; 1 ~ po(aTi_1|xy).
Reparameterizing again, we see that

T = 1 (mt - Leg(ar:t,t)) + o0z where z ~N(0,I). (59)

Finally, we arrive at

3

Ly = E. [203%6—3) e — eo(v/amo + VI —ave, t)||*|  (60)

1—a

Disclaimer

There are still several loose ends that are yet to be tied. For example, we
have not demonstrated how to deal with Ly, which is nontrivial. But I believe
the most important stuff are well-covered in this note. In addition, I would
like to also use this opportunity to highlight some caveats.

1.

Although the authors do not make this explicit, in Proposition 1.2, we
see that the divergence of Y .° f; is essential for DDPM to work.

. In the original paper, the authors start with £, (— In pg(xo)). However,

I think taking the expectation over x, creates confusion. Hence, I
started with — In pg(xo).

The authors use £, ambiguously. Since I dropped Eg,, we only need to
deal with Eg . ~q(z,.r|z) and later on E¢, which makes the derivation
a lot clearer.

Proposition 1.1, Proposition 1.2, Lemma 2.1, and Corollary 2.1 are
great conclusions to remember.
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