
Plug-and-Play ADMM
using MATLAB and PyTorch

Kaibo Tang

June 18, 2024

1 Background
We typically use alternating direction method of multipliers (ADMM) to
solve problems of the form:

min
x,z

f(x) + g(z) subject to Ax+Bz = c. (1)

In particular, we focus on problems of the form

min
x

f(x) + g(x) ⇐⇒ min
x,z

f(x) + g(z) subject to x = z. (2)

A handful of tasks fall under this category, e.g., image restoration, which will
be the focus of this note.

2 Problem Formulation
Consider the following image restoration problem in the form of (2):

min
x

∥Ax− b∥22 +R(x) ⇐⇒ min
x,z

∥Ax− b∥22 +R(z), (3)

where x is the desired underlying image (of arbitrary dimension) to be re-
constructed, b is the �potentially noisy) observation, and R(·) is an arbitrary
regularizing term that punishes deviation from the prior knowledge about
the underlying image.

1

The augmented Lagrangian for parameter ρ > 0 is given by

Lρ(x, z, u) = ∥Ax− b∥22 +R(z) + uT (x− z) +
ρ

2
∥x− z∥22. (4)

Completing the square and letting w = u/ρ yields

Lρ(x, z, u) = ∥Ax− b∥22 +R(z) +
ρ

2
∥x− z + w∥22 −

ρ

2
∥w∥22. (5)

Following ADMM, the problem is solved by iteratively performing the fol-
lowing steps:

x(k) = arg min
x

∥Ax− b∥22 +
ρ

2
∥x− z(k−1) + w(k−1)∥22 (6)

z(k) = arg min
z

R(z) +
ρ

2
∥x(k) − z + w(k−1)∥22 (7)

w(k) = w(k−1) + x(k) − z(k). (8)

Under the Plug-and-Play (PnP) ADMM scheme, (7) is replaced by an
arbitrary denoiser that removes additive white Gaussian noise from the im-
age. The detailed derivation of the equivalence between (7) and a Gaussian
denoiser can be found here.1 Intuitively, a denoiser of choice is assumed
to “carry” some form of implicit prior about the underlying image and is
capable of decreasing the cost function in (7) significantly.

Hence, given a denoiser of choice D, the ADMM updates becomes

x(k) = arg min
x

∥Ax− b∥22 +
ρ

2
∥x− z(k−1) + w(k−1)∥22 (9)

z(k) = D(x(k) + w(k−1)) (10)
w(k) = w(k−1) + x(k) − z(k). (11)

3 Implementation
3.1 Preparation
Suppose we have four files at hand. model.py contains the model architec-
ture;

1http://arxiv.org/abs/1903.08616

2

model.py

import torch.nn as nn

class model(nn.Module):
def ^_init^_(self, *args, **kwargs):

super().^_init^_()
pass

def forward(self, x):
pass

model.pt is the state_dict saved after training is finished

arbitrary_script.py

the last kwarg is REQUIRED for it to work in MATLAB
torch.save(

model.state_dict(),
"./model.pt",
_use_new_zipfile_serialization=False,

)

for_matlab.py defines some helper functions for model loading, infer-
ence, and data handling;

for_matlab.py

from model import model

import numpy as np
import torch

def to_tensor(x, device='cuda'):
assume x is from MATLAB of shape (Nx, Ny, Nz, C)
1. load as contiguous array
x = np.asarray(x)
x = np.ascontiguousarray(x)
2. convert x to tensor and permute to (1, C, Nx, Ny, Nz)
x = torch.tensor(

x[:, :, :, :, np.newaxis],
dtype=torch.float32,

).permute(4, 3, 0, 1, 2).to(device)
return x

3

def to_matlab(x):
assume x is a tensor of shape (1, C, Nx, Ny, Nz)
1. detach cpu squeeze reshape numpy
x = x.detach().cpu().squeeze().permute(1, 2, 3, 0).numpy()
2. convert x to contiguous array
x = np.ascontiguousarray(x)
return x

def load_model(device='cuda'):
model_dir = "./model.pt"
model = model()
model.load_state_dict(torch.load(model_dir))
model.to(device)
model.eval()
return model

def denoiser(x):
model = load_model()
inferer = load_inferer()
x = to_tensor(x)
with torch.no_grad():

y = model(x)
y = to_matlab(y)
return y

load_denoiser.m is a MATLAB function that loads the denoiser, and
return a function handle to be called in MATLAB

% load_denoiser.m

function [D] = load_denoiser()
model = py.importlib.import_module('model');
py.importlib.reload(model);
inference = py.importlib.import_module('for_matlab');
py.importlib.reload(inference);
D = @(x) double(inference.denoiser(x));

end

3.2 Initialize variables and load denoiser
Before starting, x, z, w need to be initiated as 0 and load the denoiser.

4

% main.m

% suppose image size is Nx, Ny, Nz
x = zeros(Nx,Ny,Nz,C);
z = zeros(Nx,Ny,Nz,C);
w = zeros(Nx,Ny,Nz,C);

% load denoiser
denoiser = load_denoiser();

Note that although the variables are initiated as matrices, during lsqr,
the variables are treated as column vectors.

3.3 Step 1
For the ease of implementation, the update in (9) can be re-written as

x(k) = arg min
x

∥∥∥∥[A√
ρ/2I

]
x−

[
b√

ρ/2(z(k−1) − w(k−1))

]∥∥∥∥2

2

. (12)

Notice that (12) has closed-form solution ∀ρ > 0, which is given by

x(k) =
(
A∗A+

ρ

2
I
)−1 (

A∗b+
ρ

2
(z(k−1) − w(k−1))

)
, (13)

since (A∗A+ρ/2I) is positive definite. Realistically, we could use pcg to solve
(13), but using lsqr to solve (12) offers “favorable numeric properties.”2

Empirically, lsqr is twice as fast compared to solving the equivalent normal
equation using pcg.

% main.m

% LHS matrix of the equation
LHS = [A; sqrt(rho/2)*eye(size(A,2)];
% RHS column vector of the equation
RHS = [b; sqrt(rho/2)*(z-w)];
% step 1: call LSQR
[a, ~, ~, ~, ~] = lsqr(LHS, RHS, 1e-6, 10, [], [], x(:));
% reshape
x = reshape(real(a), [Nx,Ny,Nz]);

2https://www.mathworks.com/help/matlab/ref/lsqr.html

5

For an empirical comparison of convergence under different methods solv-
ing the same equation, see Figure 1.

Figure 1: Solving Ax = b using LSQR via lsqr(A, b) compared to solv-
ing A∗Ax = A∗b using PCG and SYMMLQ via pcg(A'*A, A'*b) and
symmlq(A'*A, A'*b).

3.4 Step 2 and 3

% main.m

% step 2: call the denoiser on x+w
z = denoiser(x+w)

% step 3: update w
w = x+w-z

To get PnP ADMM started, place steps 1-3 in a for loop.

6

	Background
	Problem Formulation
	Implementation
	Preparation
	Initialize variables and load denoiser
	Step 1
	Step 2 and 3

