Deformable Image Registration

Kaibo Tang

February 15, 2024

Realistically, images are defined on discretely sampled grids. However, for the sake of simplicity, we assume each image is defined on a continuously sampled coordinate system instead.

Definition 1 (Image domain). Let $\Omega \subseteq \mathbb{R}^{3}$ be the image domain on which both fixed and moving images are defined.

Definition 2 (Fixed and moving images). Let

$$
f: \Omega_{f} \rightarrow \mathbb{R}, m: \Omega_{m} \rightarrow \mathbb{R}
$$

denote fixed and moving images, respectively, where the value at each voxel is a scalar, i.e., a grayscale intensity.

Definition 3 (Deformation field). Let

$$
\phi: \Omega_{f} \rightarrow \Omega_{m}
$$

be a deformation field that warps the moving image to the fixed image.
Remark 4 (Matrix definition of deformation fields). Typically, in practice, ϕ is represented by a 3D matrix of shape $H \times W \times D$. Let $\phi_{h w d}$ denote the entry of the matrix at (h, w, d). In this case, $(h, w, d) \in \Omega_{f}$ is the voxel location in the fixed image domain whereas $\phi_{h w d} \in \Omega_{m}$ is the corresponding voxel location in the moving image domain.

Remark 5. Definition 3 might look strange since ϕ is defined on Ω_{f} and takes values in Ω_{m} but it represents the warping of the moving image to the fixed image. There are two ways to explain this.

First, consider applying ϕ to m, i.e., $m \circ \phi$. Since $\phi: \Omega_{f} \rightarrow \Omega_{m}$ and $m: \Omega_{m} \rightarrow \mathbb{R}$. We know

$$
m \circ \phi: \Omega_{f} \rightarrow \mathbb{R}
$$

is an image defined in the image domain of the fixed image.
In addition, we can also consider how deformation is applied to the moving image in practice. For each voxel location $\mathbf{p} \in \Omega_{f}, \phi(\mathbf{p}) \in \Omega_{m}$ represents the corresponding voxel location in the image domain of the moving image. $\phi(\mathbf{p})$ is also the voxel location from which we will sample an intensity $m(\phi(\mathbf{p})) \in \mathbb{R}$ for the voxel $\mathbf{p} \in \Omega_{f}$.

Definition 6 (Displacement field). We define displacement field as a collection of vectors $u(\mathbf{p})$ at each voxel location $\mathbf{p} \in \Omega_{f}$ that needs to be added to \mathbf{p} to obtained the corresponding voxel location $\phi(\mathbf{p}) \in \Omega_{m}$.

Remark 7 (Matrix definition of displacement fields). Similar to Remark 4, we can write u in terms of a 3D matrix.

Proposition 8. Using the matrix definition in Remark 4 and 7, we have

$$
\phi=I d+u
$$

where $I d: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the identity transformation and $u: \Omega_{f} \rightarrow \mathbb{R}^{3}$.
Remark 9. (Warping point clouds). Let $\left\{\mathbf{p}_{i}\right\}_{i=1}^{N}$ denote a collection of N points defined on Ω_{f}. Suppose $u: \Omega_{f} \rightarrow \mathbb{R}^{3}$ as in Proposition 8. Then, we can warp each $\mathbf{p}_{i} \in \Omega_{f}$ to the corresponding voxel location $\tilde{\mathbf{p}}_{i} \in \Omega_{m}$, i.e.,

$$
\tilde{\mathbf{p}}_{i}=\mathbf{p}_{i}+u\left(\mathbf{p}_{i}\right) .
$$

