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1 Introduction
Estimation by score matching1 was introduced by Hyvärinen in 2005. It
offers an alternative to traditional Markov Chain Monte Carlo methods for
estimating models where the probability density function (pdf) is known only
up to a multiplicative normalization constant.

Suppose x ∈ Rn whose pdf is given by px(·). We want want to estimate θ
from x such that the estimate θ̂ allows us to approximate px(·) by p(·; θ̂). As-
sume that we can only compute the pdf up to a multiplicative normalization
constant given by Z(θ):

p(ξ;θ) =
1

Z(θ)
q(ξ;θ). (1)

2 Score Matching Estimator
The author first introduces the concept of score functions. The score function
of the model pdf ψ is given by

ψ(ξ;θ) = ∇ξ ln p(ξ;θ), (2)

and the score function of the underlying data pdf ψx is given by

ψx(·) = ∇ξ ln px(·). (3)
1jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
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The score matching estimator of θ is then given by the one that minimizes
the expected squared distance between ψ(·,θ) and ψx(·), i.e.,

θ̂ = arg min
θ
J(θ), (4)

where
J(θ) =

1

2

∫
ξ∈Rn

px(ξ)∥ψ(ξ;θ)−ψx(ξ)∥22dξ. (5)

In the paper, the author proves two theorems that are central to the
understanding of the method. Here, I will provide the theorems and brief
proofs.

Theorem 2.1. Assume the model score function ψ(ξ;θ) and the data pdf
px(ξ) are differentiable. In addition, assume

1. the expectations Ex(∥ψ(x;θ)∥22) and Ex(∥ψx(x)∥22) are finite ∀θ, and

2. ∀θ, px(ξ)ψ(ξ;θ) → 0 as ∥ξ∥2 → ∞.

Then, the objective function in (5) can be written as

J(θ) =

∫
ξ∈Rn

px(ξ)
n∑

i=1

[
∂iψi(ξ;θ) +

1

2
ψi(ξ;θ)

2

]
dξ + const, (6)

where ψi(·;θ) is the i-th component of the model score function, and ∂iψi(·;θ)
is the partial of ψi(·;θ) with respect to ξi.

Proof. Starting from (5), we have

J(θ) =

∫
Rn

px(ξ)

[
1

2
(ψ(ξ;θ))2 +

1

2
(ψx(ξ))

2 −ψx(ξ)
Tψ(ξ;θ)

]
dξ. (7)

Notice that the first term in the bracket in (7) becomes the second term
under the summation in (6), and the second term in the bracket in (7) does
not depend on θ and can thus be discarded. Hence, we only need to show

−
∫
Rn

px(ξ)ψx(ξ)
Tψ(ξ;θ)dξ =

∫
Rn

px(ξ)
n∑

i=1

∂iψi(ξ;θ)dξ. (8)

Notice that by the definition of ψx and chain rule, we have

ψx,i(ξ) =
∂ ln px(ξ)

∂ξi
=

1

px(ξ)

∂px(ξ)

∂ξi
. (9)
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Using (9), we can rewrite the LHS of (8) as following:

LHS = −
n∑

i=1

∫
Rn

px(ξ)ψx,i(ξ)ψi(ξ;θ)dξ (10)

= −
n∑

i=1

∫
Rn

∂px(ξ)

∂ξi
ψi(ξ;θ)dξ. (11)

By integration by parts, we have∫
R

∂px(ξ)

∂ξi
ψi(ξ;θ)dξi +

∫
R

∂ψi(ξ;θ)

∂ξi
px(ξ)dξi = px(ξ)ψi(ξ;θ)|ξi=∞

ξi=−∞ . (12)

Notice that the RHS of (12) vanishes by assumption 2 since ∥ξ∥2 → ∞ as
|ξi| → ∞. Lastly, recalling Fubini’s theorem, using (12) and following from
(11), we have

LHS =
n∑

i=1

∫
Rn

∂ψi(ξ;θ)

∂ξi
px(ξ)dξ =

∫
Rn

px(ξ)
n∑

i=1

∂iψi(ξ;θ)dξ = RHS. (13)

Remark 2.1.1. In the proof given by the author,2 the “multivariate version
of such partial integration” that the author claim to use is in fact just the
usual integration by parts in the single variable case. But notice how, in the
proof provided here, Fubini’s theorem is used to apply this trick for single
variable case to the multivariate case.

Remark 2.1.2. In practice, if we sample sufficient observations of x denoted
by x(1), · · · , x(T ). Then the objective in (6) can be approximated by

JT (θ) =
1

T

T∑
t=1

n∑
i=1

[
∂iψi(x(t); θ) +

1

2
ψi(x(t); θ)2

]
+ const. (14)

This is true due to the law of large numbers, which, in this case, states
that, for a fixed θ, the sample average JT (θ) becomes arbitrarily close to the
expected value J(θ) for T sufficiently large. As we shall see later in Theorem
2.4, under additional assumptions, this convergence becomes uniform in θ.

2See Appendix A, pp.706-708.
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Remark 2.1.3 (Motivation of Score Matching). One of the major motiva-
tions of score matching is to drop the normalization constant Z(θ). Indeed,

ψ(ξ;θ) = ∇ξ ln p(ξ;θ) = ∇ξ ln q(ξ;θ) +∇ξ ln 1

Z(θ)
= ∇ξ ln q(ξ;θ). (15)

Hence, we have

ψi(ξ;θ) =
∂ ln q(ξ;θ)

∂ξi
and ∂iψi(ξ;θ) =

∂ψi(ξ;θ)

∂ξi
=
∂2 ln q(ξ;θ)

∂ξ2i
. (16)

Notice that Z(θ) does not appear at all in the objective function in (6).
Nevertheless, as is shown in Theorem 2.2, without having to explicitly compute
Z(θ), the estimator in (4) is well-defined.

Theorem 2.2 (Well-definedness). Assume that there exists a unique θ∗ such
that the pdf of x follows the model parameterized by θ∗, i.e., px(·) = p(·;θ∗)
almost everywhere (a.e.).3 Here, we say the solution is unique if

p(·; θ̃∗) = p(·;θ∗) a.e. =⇒ θ̃∗ = θ∗. (17)

In addition, assume that q(ξ;θ) > 0 ∀ξ,θ. Then

J(θ) = 0 ⇐⇒ θ = θ∗. (18)

Proof. [=⇒] Assume J(θ) = 0. Since Z(θ∗) > 0 and q(ξ;θ∗) > 0 ∀ξ, we
have

px(ξ) = p(ξ,θ∗) =
1

Z(θ∗)
q(ξ;θ∗) > 0 a.e. (19)

Since J(θ) = 0, we have ψx(·) = ψ(·;θ) a.e., which implies that ln px(·) and
ln p(·;θ) differ only by an additive constant. But since both px(·) and p(·;θ)
are pdf’s, the constant has to be 0. Hence, p(·;θ) = px(·) = p(·;θ∗) a.e.
Lastly, by uniqueness, we have θ = θ∗.

[⇐=] The converse is trivial.

Lastly, in this note, a detailed proof of Corollary 3 in the article4 is
provided, along with some additional mild regularity assumptions that guar-
antees the consistency of the score matching estimator obtained by mini-
mization of JT in (14).

3With respect to the Lebesgue measure.
4See p.698.
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Lemma 2.3. Let (xn) be a bounded sequence in Rn. Then, (xn) is convergent
⇐⇒ every convergent subsequence of (xn) converges to the same limit.

Proof. [⇐=] We prove the contrapositive. Suppose xn does not converge to
x, i.e., ∃ϵ > 0 s.t. |xn − x| ≥ ϵ ∀n ∈ N. By Bolzano-Weierstrass theorem, we
can construct a convergent subsequence of (xn) say (xnk

) such that xnk
does

not converge to x.
[=⇒] The converse is trivial.

Theorem 2.4 (Corollary 3). Assume θ ∈ Θ ⊆ Rm compact. Let f : Rn ×
Θ → R be given by

f(ξ,θ) :=
1

2
∥ψ(ξ;θ)−ψx(ξ)∥22. (20)

In addition to the assumptions made in Theorem 2.1 and 2.2, assume the
following:

1. ∀θ ∈ Θ, f(ξ,θ) is Lebesgue measurable and continuous for almost all
ξ ∈ Rn, and

2. ∃ dominating function d : Rn → R s.t. Eξ[d(ξ)] <∞ and

∥f(ξ,θ)∥ ≤ d(ξ) ∀θ ∈ Θ. (21)

Then, the score matching estimator obtained by minimization of JT in (14)
of Remark 2.1.2 is consistent, i.e.,

θ̂T → θ∗ as T → ∞ (22)

where θ̂T is the estimator obtained by minimization of JT :

θ̂T = arg min
θ
JT (θ), (23)

and we recall θ∗ is the unique parameter such that px(·) = p(·;θ∗) a.e. as in
Theorem 2.2.

Proof. From assumptions 1 and 2, along with the compactness of Θ, by the
uniform law of large numbers,5 we have JT → J uniformly in θ.

5en.wikipedia.org/wiki/Law_of_large_numbers#Uniform_laws_of_large_numbers

5

https://en.wikipedia.org/wiki/Law_of_large_numbers#Uniform_laws_of_large_numbers


Consider an arbitrary subsequence (θ̂Tk
) of the sequence (θ̂T ) s.t.

θ̂Tk
→ θ̂′ as k → ∞. (24)

By (23), we have
JTk

(θ̂Tk
) ≤ JTk

(θ) ∀θ ∈ Θ. (25)
Since JTk

→ J uniformly, we have JTk
(θ) → J(θ) point-wise. Additionally,

by the uniform convergence of JTk
and (24), we have

JTk
(θ̂Tk

) → J(θ̂′). (26)

Hence, from (25) and (26), we have

J(θ̂′) ≤ J(θ) ∀θ ∈ Θ, (27)

i.e.,
θ̂′ = arg min

θ
J(θ) =⇒ J(θ̂′) = 0 ⇐⇒ θ̂′ = θ∗. (28)

Therefore, we have
θ̂Tk

→ θ∗ as k → ∞. (29)
Lastly, by Lemma 2.3, we have

θ̂T → θ∗ as T → ∞, (30)

which finishes our proof.

Remark 2.4.1. Lastly, I would like to remind the reader what we have man-
aged to show so far in Theorem 2.4. We demonstrate the practical significance
of score matching, i.e., that the estimator obtained by minimization of JT
becomes arbitrarily close the true underlying parameter value for sample size
T sufficiently large.

3 Examples
The focus of this note is on the theoretical aspect of score matching estimator.
Hence, simulations are beyond the scope of this note and are left to the
readers as exercise :)
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