
Spherical Harmonics Fitting
Kaibo Tang

July 3, 2024

1 Introduction
Spherical harmonics (SHs) comes in handy when we deal with complex-valued
functions defined on the unit sphere. Sometimes we might wish to fit SHs up
to a certain order to a spherical function, usually for the following reasons
among many others:

1. We wish to reduce the dimension of the data.

2. We are looking for a smooth representation of the discretely sampled
(and potentially noisy) data points defined on the unit sphere.

In addition, when the underlying data distribution on the unit sphere satisfies
antipodal symmetry, we might opt to use only the SH of even orders to ensure
the reconstructed signal also follows antipodal symmetry. For scenarios where
the observed data on the unit sphere is very noisy, we might want to have
a regularization factor λ which we can tune during SHs fitting to ensure we
don’t overfit on the noise.

In this note, I will discuss both theoretically and practically how we
can perform SHs fitting. The theoretical part of this note bases heavily
on the original paper by Maxime Descoteaux who proposed this method.1
The practical part of this note is based on Spherical-Harmonics-Fitting,2 a
MATLAB toolbox developed by myself. The toolbox is a re-implementation
of selected tools from DIPY.3

110.1002/mrm.21277
2mathworks.com/matlabcentral/fileexchange/168591-spherical-harmonics-fitting
3github.com/dipy/dipy

1

https://doi.org/10.1002/mrm.21277
https://www.mathworks.com/matlabcentral/fileexchange/168591-spherical-harmonics-fitting
https://github.com/dipy/dipy

2 Theory
We assume the readers have familiarity with SHs and will skip the definitions
of SHs. For a brief review, see DIPY’s explanation.4

2.1 Univariate case
Let f : S2 → F be the spherical function of interest. For the rest of the note,
we take F = R but the same method applies to complex-valued spherical
functions as well. Suppose we sample f N -times, and let (θi, ϕi)

N
i=1 denote

the locations where the samples are taken, where θi denote the polar angle
and ϕi denote the azimuthal angle of the i-th sample. Let R = (l+1)(l+2)/2
denote the number of SH coefficients up to a max order of l.

In addition, we define the following notations.

• Let B ∈ MN×R be given by

B =

 Y1(θ1, ϕ1) Y2(θ1, ϕ1) · · · YR(θ1, ϕ1)
...

Y1(θN , ϕN) Y2(θN , ϕN) · · · YR(θN , ϕN)

 , (1)

where Yr denote the r-th SH basis function.

• Let the column vector c ∈ RR denote the SH coefficients.

• Let the column vector s ∈ RN denote the observed data at the sampled
locations.

Without any regularization, a naive implementation of SH fitting would
come in the form of

min
c

∥Bc − s∥22 . (2)

And an naive implementation of a regularized version of this problem would
be using Tikhonov regularization, i.e.,

min
c

∥Bc − s∥22 + λ ∥c∥22 . (3)

However, Tikhonov regularization assigns penalty weight to lower and higher
order coefficients equally. For the sake of preventing overfitting and recall-
ing the famous statistical principle of parsimony, we might want to assign

4workshop.dipy.org/documentation/1.5.0/theory/sh_basis/

2

https://workshop.dipy.org/documentation/1.5.0/theory/sh_basis/

more penalty on higher order coefficients. In light of this observation, for a
reconstructed spherical function f̂ : S2 → R given by

f̂ = B̄c, where B̄ =
(
Y1 Y2 · · · YR

)
, (4)

Descoteaux et al., 2007 propose the following regularization:

E(f̂) =

∫
Ω

(∆f̂)2dΩ (5)

where
∫
Ω

denote surface integral over the unit sphere S2, and ∆ is the
Laplace-Beltrami operator, which penalize deviation from smoothness of the
reconstructed signal f̂ . Leveraging the fact5 that the linear operator ∆ sat-
isfies

∆Y m
l = −l(l + 1)Y m

l , (6)
and that the SH basis functions are orthonormal,6 we have

E(f̂) =

∫
Ω

(∆(B̄c))2dΩ (7)

=

∫
Ω

(
R∑

r=1

cr∆Yr

)2

dΩ (8)

=

∫
Ω

(
R∑

r=1

cr(−lr(lr + 1)Yr)

)2

dΩ (9)

=
R∑

r=1

l2r(lr + 1)2c2r

∫
Ω

|Yr|2dΩ (10)

=
R∑

r=1

l2r(lr + 1)2c2r (11)

= ∥Lc∥22, (12)

where L = diag(l1(l1 + 1), · · · , lR(lR + 1)). Note that we apply (6) to get (9)
from (8). To get from (9) to (10), observe that the “mixed” terms vanish due
to orthogonality. To get from (10) to (11), recall the normality of Yr.

Note that in this formulation, the weight for higher order coefficients (i.e.,
larger lr) is also larger. As a result, compared to Tikhonov regularization,

5This is a well-known fact about SH but I don’t have a reference on top of my head.
6This is another fact about SH that I don’t have a reference for.

3

the regularizer here punishes higher order coefficients more than it does for
lower order coefficients. Hence, the SH fitting problem with regularization
now is given by

min
c

∥Bc − s∥22 + λ ∥Lc∥22 , (13)

which is equivalent to solving the following equation in block matrix notation:(
B√
λL

)
c =

(
s
0

)
. (14)

2.2 Multivariate case
Solving this linear problem for a scalar-valued spherical function might not
pose a significant computational barrier. However, for vector-, matrix-, or
tensor-valued spherical functions, solving (14) individually for each s becomes
intractable. Hence, similar to the implementation in DIPY, we solve the
problem using Moore–Penrose pseudoinverse, i.e,

ĉ =

(
B√
λL

)+(s
0

)
. (15)

Note that using pseudoinverse allows us to vectorize the problem. Consider
a flattened tensor-valued spherical function F : S2 → RV . Let

S =
(
s1 · · · sV

)
(16)

denote the observed and flattened data tensors of the tensor-valued spherical
functions where each sv denotes an observed data of scalar-valued spherical
function. And let

Ĉ =
(
c1 · · · cV

)
(17)

denote the fitted SH coefficients flattened in the same fashion as S where each
cv denotes the fitted SH coefficients for sv. Then, the SH fitting problem with
regularization can be solved by

Ĉ =

(
B√
λL

)+(S
0

)
.

Now, from the SH coefficients, we can then obtain the reconstructed tensor-
valued (despite flattened) spherical function F̂ : S2 → RV by

F̂ = B̄Ĉ. (18)

4

3 Method
In this section, we discuss how the above mentioned strategy is implemented
in practice. We will demonstrate the consistency between Spherical-Harmonics-
Fitting7 and the original Python implementation of this method.8

For case study, we consider the following problem that we might encounter
in the realm of diffusion MRI. Specifically, suppose we have a Cartesian grid
of shape H×W×L in 3D space. At each grid location, there is an underlying
orientation distribution function (ODF) that we wish to reconstruct. Let’s
say we sample N points on the unit sphere S2. These points can be identified
by their polar angles θ and azimuthal angles ϕ, i.e.,

theta = ^^.; % shape (N,)
phi = ^^.; % shape (N,)

We make N observations along the directions defined by the N points for
each ODF. And the observations can be represented by a tensor:

odf = ^^.; % shape (H, W, L, N)

Now, we can perform SH fitting and obtain the SH coefficients at each grid
location. In this case, we fit even order SHs (by default) up to order 8 with
no smoothing (by default):

sh = sf_to_sh(odf, theta, phi, 8);

At this point, we might wish to performance inference using the fitted SH
coefficients, i.e., predict the ODFs evaluated along other directions. Let’s say
we sample M points this time on the unit sphere given by

new_theta = ^^.; % shape (M,)
new_phi = ^^.; % shape (M,)

We can then perform inference by calling the following:

sf = sh_to_sf(sh, new_theta, new_phi, 8);

7mathworks.com/matlabcentral/fileexchange/168591-spherical-harmonics-fitting
8github.com/dipy/dipy

5

https://www.mathworks.com/matlabcentral/fileexchange/168591-spherical-harmonics-fitting
https://github.com/dipy/dipy

An interested reader might wish to try the code themselves. See the example
script.9

For the sake of completeness, a Python script using DIPY that performs
the same task is also provided below.

from dipy.core.sphere import Sphere
from dipy.reconst.shm import sf_to_sh, sh_to_sf

theta = ^^. # shape (N,)
phi = ^^. # shape (N,)
sphere = Sphere(theta=theta, phi=phi)

odf = ^^. # shape (H, W, L, N)

sh = sf_to_sh(odf, sphere, 8)

new_theta = ^^. # shape (M,)
new_phi = ^^. # shape (M,)
new_sphere = Sphere(theta=new_theta, phi=new_phi)

sf = sh_to_sf(sh, new_sphere, 8)

4 Caveats
There are some clarifications about both the technical and practical aspect
of this method that need to be made.

Remark 4.1 (Regarding antipodal symmetry). When dealing with spherical
functions that satisfy antipodal symmetry, instead of fitting the full set of
SHs, we might wish to fit using only the SHs of even orders. This is because
even order SHs are symmetric (and thus even).

Remark 4.2 (Regarding θ and ϕ). Different packages adopt different con-
ventions for polar and azimuthal angles.

1. MATLAB and DIPY use θ for polar angle and ϕ for azimuthal angle.

2. SciPy uses θ for azimuthal angle and ϕ for polar angle.

In this package, we follow the first convention.
9github.com/kvttt/SphericalHarmonicsFitting/blob/main/test.m

6

https://github.com/kvttt/Spherical-Harmonics-Fitting/blob/main/test.m

5 Package logo

Figure 1: Package logo of Spherical-Harmonics-Fitting showing all the SHs
up to a maximum order of 3 (hand-drawn by the author).

7

	Introduction
	Theory
	Univariate case
	Multivariate case

	Method
	Caveats
	Package logo

