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1 Introduction
The purpose of this note is to give some intuitions about how Tikhonov
regularization helps iterative algorithms converge to a plausible solution. In
particular, I will provide intuitions from four different perspectives–two from
the standpoint of linear algebra, one front a geometric perspective, and one
statistical interpretation.

2 Problem Statement
Consider the linear systems of form

Ax = b, (1)

where we assume A to have shape m × n, x to have shape n × 1, and b to
have shape m× 1.

When m > n, the problem has infinite many solutions. In this case, we
say the system is under-determined and we say matrix A is ill-conditioned.
When m = n, the problem has a unique solution when A is non-singular, and
has a infinite many solutions otherwise. When m < n, the problem usually
does not have a solution. However, we can find a x̂ such that it minimizes
the squared ℓ2−norm of the residual, i.e.

x̂ = argmin
x

∥Ax− b∥22. (2)

For the sake of simplicity, in this note, I will focus solely on the case
where m > n where the system is under-determined. Since the system has
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infinite many solutions, we might be interested in finding the solution whose
ℓ2−norm is the smallest. This motivates the use of Tikhonov regularization,
which does so by solving the minimization problem of form

x̂ = argmin
x

∥Ax− b∥22 + λ∥x∥22. (3)

To find x̂ as in (3), we differentiate the function we wish to minimize and set
the gradient to 0, i.e.,

0 =
d

dx

[
∥Ax− b∥22 + λ ∥x∥22

]
= 2(Ax− b)TA+ 2λxT . (4)

Simplification of (4) yields the normal equation

(ATA+ λI)x = AT b. (5)

At this point, we almost arrive at our first intuition, which we will discuss
without further ado.

3 Intuition 1: Positive Definite Matrix
Equation (5) suggests that, ∀λ > 0, we have a closed form solution given by

x̂ = (ATA+ λI)−1AT b, (6)

where the square matrix ATA+ λI is positive definite and is thus invertible.
To see why ATA+ λI is positive definite, notice that ∀x ̸= 0, we have

xT (ATA+ λI)x = ∥Ax∥22 + λ∥x∥22 > 0. (7)

4 Intuition 2: Condition Number
If any arbitrarily small λ > 0 makes ATA+λI invertible, why bother picking
a bigger λ? The second intuition explains the benefit of picking a bigger λ.

Recall condition number from a typical undergraduate-level numerical
analysis course. In our case, the condition number κ(A) quantifies the sen-
sitivity of x to slight perturbations in b. A smaller κ(A) would suggest that
the solution x̂ to the system in (1) does not change much when slight per-
turbations, e.g., noise, is applied to b.

In the following figure, we demonstrate the effect of λ on the condition
number of ATA+ λI, where A =

[
1 1

]
.
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Figure 1: Condition number of ATA+ λI for λ ∈ {0.01, 0.1, 1, 10, 100}.

5 Intuition 3: Loss Landscape
For my visual learners out there, I visualize the loss landscape for different
λ. In particular, consider the same linear system with A =

[
1 1

]
and b = 1.

Notice that the solution to the system is the set of all points on the line
x1 + x2 = 1. In particular, the solution with the least ℓ2−norm is (0.5, 0.5).
The loss function is given by

f(x) = ∥Ax− b∥22 + λ ∥x∥22 = (x1 + x2 − 1)2 + λ(x2
1 + x2

2). (8)

From the figure, observe that the unique solution to the Tikhonov-regularized
linear problem can get arbitrarily close to (0.5, 0.5), the solution with the least
ℓ2−norm when we pick λ sufficiently small. However, the corresponding loss
landscape does not look too good–once we get to the valley, i.e., close to
the line x1 + x2 = 1, the gradient becomes too small. On the other hand,
when we have a large λ, the loss landscape looks great. But since the opti-
mization problem now is dominated by the regularization term, the unique
solution to the Tikhonov-regularized linear problem is close to the origin,
whose ℓ2−norm is close to 0.
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Figure 2: Loss landscape (contour map) for λ ∈ {0, 0.01, 0.1, 1, 10, 100}.

Figure 3: Loss landscape (surface) for λ ∈ {0, 0.01, 0.1, 1, 10, 100}.
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6 Intuition 4: Statistical Interpretation
Since I am a biostatistics major myself, I would like to finish the note with
a statistical interpretation.

We first recall the system of linear equations in (1),

Ax = b. (9)

To motivate the following interpretation, we assume that we wish to recover
the underlying signal x from noisy observation b corrupted by additive white
Gaussian noise, i.e.,

b = Ax+ ϵ where ϵ ∼ N (0, σ2
ϵ I). (10)

Note how the independence and homoscedasticity assumptions are implied
here.

The maximum a posteriori (MAP) estimate of x from b is given by

x̂ = argmax
x

p(x|b) = argmin
x

[− ln p(b|x)− ln p(x)], (11)

where the second equality came from Bayes rule. To simplify the log-likelihood
term in (11), notice that

− ln p(b|x) = − ln(2π)−
n
2 |σ2

ϵ I|−
1
2 exp

[
−1

2
(b− Ax)T (σ2

ϵ I)
−1(b− Ax)

]
(12)

=
1

2σ2
ϵ

∥b− Ax∥22 + const. (13)

Now, we are left with the log-prior term. The prior term, as is suggested
by the name, should carry some form of “prior knowledge” regarding the
distribution of x. In medical imaging, this “prior knowledge” often comes
in the form of sparsity, e.g. sparsity in the Fourier-transformed frequency
domain, wavelet-transformed coefficient domain, spherical harmonics coeffi-
cient domain, etc., which are all beyond the scope of this note. Here, we
make a very simple assumption about what we know about x in terms of
“prior knowledge”, i.e., that

x ∼ N (0, σ2
xI). (14)

However, typically, the signal x we are trying to estimate, e.g., an image, or a
time-series, often display some form of auto-correlation and the assumption
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in (14) is rarely satisfied but here we go. With the assumption in (14), we
can now simplify the log-prior term in (11). Notice that, similar to (12) and
(13), we have

− ln p(x) =
1

2σ2
x

∥x∥22 + const. (15)

Now, the MAP estimate of x is given by

x̂ = argmin
x

[
1

2σ2
ϵ

∥Ax− b∥22 +
1

2σ2
x

∥x∥22
]
. (16)

Observe that without the log-prior term, the MAP estimator agrees with the
ordinary least square (OLS) estimator. Further simplify (16), we have

x̂ = argmin
x

[
∥Ax− b∥22 +

σ2
ϵ

σ2
x

∥x∥22
]
. (17)

I would encourage the reader to always consider from a MAP point-of-
view before attempting to pick an appropriate λ for Tikhonov regularization.
For example, a low signal-to-noise ratio (SNR) during the acquisition process
of b would suggest a higher σ2

ϵ , in which case a larger λ should be picked
accordingly. Alternatively, if we know enough about the real distribution of
x and are confident enough that the underlying x indeed has small ℓ2−norms,
we can also pick a large λ.
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