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1 Introduction

I would like to start with a little update about myself. I started taking
MATH 754: Introductory Functional Analysis this semester. So far, I have
enjoyed it. There is one thing in particular that really surprises me, i.e.,
that all Hilbert spaces are ℓ2−spaces. Before we get started, here are some
definitions and propositions.

2 ℓ2−spaces

In this section, we define ℓ2−space and discuss its relation to L2−spaces, the
square-integrable functions.

Definition 2.1 (ℓ2−spaces). Let A be any set (possibly uncountable). Define

ℓ2(A) = {ϕ : A→ C :
∑
α∈A

|ϕ(α)|2 <∞}, (1)

where the infinite sum is interpreted as the supremum over all finite sums.

Remark 2.2. Fix ϕ ∈ ℓ2(A). Let
∑

α∈A |ϕ(α)|2 = L <∞. Let

B = {α ∈ A : ϕ(α) ̸= 0} =
∞⋃
n=1

En, where En =

{
α ∈ A : ϕ(α) ≥ 1

n

}
. (2)

Suppose α1, · · · , αk ∈ En, we then have

k ≤ Ln2. (3)

Therefore, En is finite and B is countable.
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Proposition 2.3. Using the fact that B is countable, we can verify that

⟨ϕ, ψ⟩ =
∑
α∈A

ϕ(α)ψ(α) ∀ϕ, ψ ∈ ℓ2(A) (4)

defines an inner product on ℓ2(A).

Definition 2.4 (Norm on ℓ2−spaces). Define | · |ℓ2 : ℓ2(A) → R+ to be the
norm induced by the inner product as in Proposition 2.3, i.e.,

|ϕ|ℓ2 =

(∑
α∈A

|ϕ(α)|2
) 1

2

∀ϕ ∈ ℓ2(A). (5)

Proposition 2.5. The vector space ℓ2(A) equipped with the inner product as
in Proposition 2.3 is a Hilbert space.

Remark 2.6. Notice that

ℓ2(A) = L2(A,P(A), µA) (6)

as sets, where P(A) is the power set of A and µA is the counting measure.

3 More prerequisites

In this section, we list a couple of definitions and some theorems that are
rather well-known in functional analysis.

Theorem 3.1 (Riesz-Fisher theorem). Let H be a Hilbert space. Let

{eα : α ∈ A} ⊂ H (7)

be an orthonormal set (possibly uncountable). If ϕ ∈ ℓ2(A), then ∃x ∈ H s.t.

⟨x, eα⟩ = ϕ(α) ∀α ∈ A. (8)

Definition 3.2. Let H be a Hilbert space. An orthonormal set is maximal
if it is not contained in any larger orthonormal set.

Proposition 3.3. Let H be a Hilbert space. Let S = {eα : α ∈ A} ⊂ H be
an orthonormal set. Then, S is maximal if and only if spanS = H, in which
case, if x ∈ H,

x =
∑
α∈A

⟨x, eα⟩eα (9)
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Definition 3.4 (Unitary equivalence). Let H1, H2 be inner product spaces.
A linear map U : H1 → H2 is a unitary equivalence if U is bijective and
preserves inner product, i.e.,

⟨x, y⟩H1 = ⟨Ux, Uy⟩H2 . (10)

Theorem 3.5. An orthonormal set {eα : α ∈ A} is maximal if and only if
U : H → ℓ2(A) given by Ux = ϕ where

ϕ(α) = ⟨x, eα⟩ ∀α ∈ A (11)

is a linear isometry of H onto ℓ2(A).

Proof. Notice that U is linear by construction due to the linearity of inner
product in the first argument. Furthermore, U is also onto by construction
due to Riesz-Fisher theorem. To finish, we only need to show

∥x∥2 =
∑
α∈A

|⟨x, eα⟩|2 ⇐⇒ S maximal. (12)

1. (=⇒). If S is not maximal, then ∃x ̸= 0 s.t.

⟨x, eα⟩ = 0 ∀α ∈ A. (13)

Then, ∥x∥2 ̸= 0 but
∑

α∈A |⟨x, eα⟩|2 = 0.

2. (⇐=). By Proposition 3.3, we can write

x =
∑
α∈A

⟨x, eα⟩eα. (14)

Recall that by Remark 2.2, the infinite sum is in fact a countable sum.
Hence, by orthogonality and the continuity of inner product in the first
argument, we have

⟨x, x⟩ =

〈
∞∑
i=1

⟨x, ei⟩ei,
∞∑
j=1

⟨x, ej⟩ej

〉
=

∞∑
i=1

|⟨x, ei⟩|2. (15)

Proposition 3.6. Let H1, H2 be inner product spaces. Then, U : H1 → H2

is a bijective linear isometry if and only if U is a unitary equivalence.
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We now state the desired result, which makes explicit the exact sense in
which all Hilbert spaces are ℓ2−spaces.

Theorem 3.7. Let H be a Hilbert space. If {eα : α ∈ A} ⊂ H is a maximal
orthonormal set, then U : H → ℓ2(A) given by Ux = ϕ where

ϕ(α) = ⟨x, eα⟩ ∀α ∈ A (16)

is a unitary equivalence.

Proof. By Theorem 3.5, we see that U is a bijective linear isometry. By
Proposition 3.6, we see that U is a unitary equivalence.
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