All Hilbert spaces are ℓ^2 -spaces

Kaibo Tang

January 30, 2025

1 Introduction

I would like to start with a little update about myself. I started taking MATH 754: Introductory Functional Analysis this semester. So far, I have enjoyed it. There is one thing in particular that really surprises me, i.e., that all Hilbert spaces are ℓ^2 -spaces. Before we get started, here are some definitions and propositions.

2 ℓ^2 -spaces

In this section, we define ℓ^2 -space and discuss its relation to L^2 -spaces, the square-integrable functions.

Definition 2.1 (ℓ^2 -spaces). Let A be any set (possibly uncountable). Define

$$\ell^2(A) = \{ \phi : A \to \mathbb{C} : \sum_{\alpha \in A} |\phi(\alpha)|^2 < \infty \},\tag{1}$$

where the infinite sum is interpreted as the supremum over all finite sums.

Remark 2.2. Fix $\phi \in \ell^2(A)$. Let $\sum_{\alpha \in A} |\phi(\alpha)|^2 = L < \infty$. Let

$$B = \{\alpha \in A : \phi(\alpha) \neq 0\} = \bigcup_{n=1}^{\infty} E_n, \text{ where } E_n = \left\{\alpha \in A : \phi(\alpha) \ge \frac{1}{n}\right\}.$$
 (2)

Suppose $\alpha_1, \cdots, \alpha_k \in E_n$, we then have

$$k \le Ln^2. \tag{3}$$

Therefore, E_n is finite and B is countable.

Proposition 2.3. Using the fact that B is countable, we can verify that

$$\langle \phi, \psi \rangle = \sum_{\alpha \in A} \phi(\alpha) \overline{\psi(\alpha)} \quad \forall \phi, \psi \in \ell^2(A)$$
 (4)

defines an inner product on $\ell^2(A)$.

Definition 2.4 (Norm on ℓ^2 -spaces). Define $|\cdot|_{\ell^2} : \ell^2(A) \to \overline{\mathbb{R}^+}$ to be the norm induced by the inner product as in Proposition 2.3, i.e.,

$$|\phi|_{\ell^2} = \left(\sum_{\alpha \in A} |\phi(\alpha)|^2\right)^{\frac{1}{2}} \quad \forall \phi \in \ell^2(A).$$
(5)

Proposition 2.5. The vector space $\ell^2(A)$ equipped with the inner product as in Proposition 2.3 is a Hilbert space.

Remark 2.6. Notice that

$$\ell^2(A) = L^2(A, \mathcal{P}(A), \mu_A) \tag{6}$$

as sets, where $\mathcal{P}(A)$ is the power set of A and μ_A is the counting measure.

3 More prerequisites

In this section, we list a couple of definitions and some theorems that are rather well-known in functional analysis.

Theorem 3.1 (Riesz-Fisher theorem). Let H be a Hilbert space. Let

$$\{e_{\alpha} : \alpha \in A\} \subset H \tag{7}$$

be an orthonormal set (possibly uncountable). If $\phi \in \ell^2(A)$, then $\exists x \in H \ s.t.$

$$\langle x, e_{\alpha} \rangle = \phi(\alpha) \quad \forall \alpha \in A.$$
 (8)

Definition 3.2. Let H be a Hilbert space. An orthonormal set is maximal if it is not contained in any larger orthonormal set.

Proposition 3.3. Let H be a Hilbert space. Let $S = \{e_{\alpha} : \alpha \in A\} \subset H$ be an orthonormal set. Then, S is maximal if and only if $\overline{\text{span } S} = H$, in which case, if $x \in H$,

$$x = \sum_{\alpha \in A} \langle x, e_{\alpha} \rangle e_{\alpha} \tag{9}$$

Definition 3.4 (Unitary equivalence). Let H_1, H_2 be inner product spaces. A linear map $U : H_1 \to H_2$ is a unitary equivalence if U is bijective and preserves inner product, i.e.,

$$\langle x, y \rangle_{H_1} = \langle Ux, Uy \rangle_{H_2}. \tag{10}$$

Theorem 3.5. An orthonormal set $\{e_{\alpha} : \alpha \in A\}$ is maximal if and only if $U : H \to \ell^2(A)$ given by $Ux = \phi$ where

$$\phi(\alpha) = \langle x, e_{\alpha} \rangle \quad \forall \alpha \in A \tag{11}$$

is a linear isometry of H onto $\ell^2(A)$.

Proof. Notice that U is linear by construction due to the linearity of inner product in the first argument. Furthermore, U is also onto by construction due to Riesz-Fisher theorem. To finish, we only need to show

$$||x||^{2} = \sum_{\alpha \in A} |\langle x, e_{\alpha} \rangle|^{2} \iff S \text{ maximal.}$$
(12)

1. (\Longrightarrow). If S is not maximal, then $\exists x \neq 0$ s.t.

$$\langle x, e_{\alpha} \rangle = 0 \quad \forall \alpha \in A. \tag{13}$$

Then, $||x||^2 \neq 0$ but $\sum_{\alpha \in A} |\langle x, e_{\alpha} \rangle|^2 = 0$.

2. (\Leftarrow). By Proposition 3.3, we can write

$$x = \sum_{\alpha \in A} \langle x, e_{\alpha} \rangle e_{\alpha}.$$
 (14)

Recall that by Remark 2.2, the infinite sum is in fact a countable sum. Hence, by orthogonality and the continuity of inner product in the first argument, we have

$$\langle x, x \rangle = \left\langle \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i, \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j \right\rangle = \sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2.$$
(15)

Proposition 3.6. Let H_1, H_2 be inner product spaces. Then, $U : H_1 \to H_2$ is a bijective linear isometry if and only if U is a unitary equivalence.

We now state the desired result, which makes explicit the exact sense in which all Hilbert spaces are ℓ^2 -spaces.

Theorem 3.7. Let H be a Hilbert space. If $\{e_{\alpha} : \alpha \in A\} \subset H$ is a maximal orthonormal set, then $U : H \to \ell^2(A)$ given by $Ux = \phi$ where

$$\phi(\alpha) = \langle x, e_{\alpha} \rangle \quad \forall \alpha \in A \tag{16}$$

is a unitary equivalence.

Proof. By Theorem 3.5, we see that U is a bijective linear isometry. By Proposition 3.6, we see that U is a unitary equivalence.