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1 Introduction

I would like to start with a little update about myself. I started taking
MATH 754: Introductory Functional Analysis this semester. So far, I have
enjoyed it. There is one thing in particular that really surprises me, i.e.,
that all Hilbert spaces are £?>—spaces. Before we get started, here are some
definitions and propositions.

2 (’—spaces
In this section, we define £2—space and discuss its relation to L?—spaces, the
square-integrable functions.

Definition 2.1 (2—spaces). Let A be any set (possibly uncountable). Define
CA)={p: A= C:} [o(a)f < oo}, (1)

a€cA

where the infinite sum s interpreted as the supremum over all finite sums.

Remark 2.2. Fiz ¢ € (*(A). Let ) ., |0(a)]* = L < oo. Let

Bz{&GA:gb(a)#O}zUEm whereEn:{aeAmb(a)Z%}. (2)

n=1

Suppose aq,--- ,ap € E,, we then have
k < Ln? (3)
Therefore, E, is finite and B is countable.
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Proposition 2.3. Using the fact that B is countable, we can verify that
(0, 9) =) dla)d(a) Vo, € P(A) (4)

acA
defines an inner product on (*(A).

Definition 2.4 (Norm on /?>—spaces). Define |- | : (2(A) — R¥ to be the
norm induced by the inner product as in Proposition 2.3, i.e.,

|0l = (Z \¢(0<)\2> Vo € [*(A). (5)

a€cA

Proposition 2.5. The vector space €*(A) equipped with the inner product as
in Proposition 2.3 is a Hilbert space.

Remark 2.6. Notice that
(*(A) = L*(A, P(A), pa) (6)

as sets, where P(A) is the power set of A and pa is the counting measure.

3 More prerequisites

In this section, we list a couple of definitions and some theorems that are
rather well-known in functional analysis.

Theorem 3.1 (Riesz-Fisher theorem). Let H be a Hilbert space. Let
{ea ;€ A} CH (7)
be an orthonormal set (possibly uncountable). If ¢ € (*(A), then 3x € H s.t.
(r,eq) = @p(a) Va e A. (8)

Definition 3.2. Let H be a Hilbert space. An orthonormal set is maximal
if it is mnot contained in any larger orthonormal set.

Proposition 3.3. Let H be a Hilbert space. Let S = {e, : a € A} C H be
an orthonormal set. Then, S is maximal if and only if span S = H, in which

case, if v € H,
T = Z(x,ea>ea 9)

a€cA
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Definition 3.4 (Unitary equivalence). Let Hy, Hy be inner product spaces.
A linear map U : Hy — Hy is a unitary equivalence if U is bijective and
preserves inner product, i.e.,

<xay>H1 = <UZE, Uy>H2‘ (1())

Theorem 3.5. An orthonormal set {e, : « € A} is mazximal if and only if
U: H — (*(A) given by Ux = ¢ where

o(a) = (r,e,) YVae A (11)
is a linear isometry of H onto (*(A).

Proof. Notice that U is linear by construction due to the linearity of inner
product in the first argument. Furthermore, U is also onto by construction
due to Riesz-Fisher theorem. To finish, we only need to show

lz|* = Z| T,e,)]* <= S maximal. (12)
acA

1. (=). If S is not maximal, then 3z # 0 s.t.
(r,eq) =0 VYae A (13)
Then, [[z||* # 0 but Y, |{(z,eq)[* = 0.

2. («<=). By Proposition 3.3, we can write

xr = Z<$,€a>€a. (14)

a€cA

Recall that by Remark 2.2, the infinite sum is in fact a countable sum.
Hence, by orthogonality and the continuity of inner product in the first
argument, we have

<I,JJ>=<ZI6@6@,ZI€] > Z|xez : (15)

]

Proposition 3.6. Let Hi, Hy be inner product spaces. Then, U : Hi — Hy
1s a bijective linear isometry if and only if U is a unitary equivalence.
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We now state the desired result, which makes explicit the exact sense in
which all Hilbert spaces are £2—spaces.

Theorem 3.7. Let H be a Hilbert space. If {e, : o € A} C H is a maximal
orthonormal set, then U : H — (*(A) given by Uz = ¢ where

o(a) = (r,6q0) Vae A (16)
1S a unitary equivalence.

Proof. By Theorem 3.5, we see that U is a bijective linear isometry. By
Proposition 3.6, we see that U is a unitary equivalence. 0



